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PREFACE 
 
This book was thought for a wide population of undergraduate and 

graduate students in science, and more specifically in physics. The text is 
written in a very didactic way, covering a wide range of topics in the field 
of phase equilibrium. It is in a comprehensible language, without loss of 
the proper rigour from the scientific point of view.  

The text describes different aspects of phase equilibrium, from simple 
to more complex systems, such as liquid crystals, polymers, superconductivity 
and superfluidity, growth of interfaces, fractals, non-linear systems, chaos 
and self-organization. One of the aims of the authors is to present the basic 
characteristics of the living systems, without considering the origin of life 
itself. The description of the different topics is supported as far as possible 
by experimental and theoretical concepts arising from physics, mathematics, 
and physical and biophysical chemistry, which can be applied in biology, 
biochemistry and environmental sciences. 

The authors cover these topics from Chapter 1 to Chapter 13. They 
start from the phase equilibrium of simple substances and the 
thermodynamic requirement based on the chemical potential for deducing 
the basic equations (such as Clapeyron and Clausius Clapeyron equations), 
and then describe several types of equilibrium, until Chapter 7, where the 
statistical aspects of macromolecular systems are considered. More 
advanced topics are developed from Chapter 8 to 12. The phase transitions 
in quantum systems are presented in a didactic approach in comparison 
with other treatments described in the literature.  

Finally, the ideas developed in the previous chapters, such a self-
organization, chaos and fractality are exposed to analyse those processes in 
biological systems. In Chapter 13 the authors present their own ideas about 
the factors that are relevant in interpreting the basic aspects of the living 
systems. 

The diagrams, figures and examples are well presented and they 
contribute to a better understanding of the different topics developed in the 
text. The references are wide, classic and modern. 

The authors demonstrate their experience in teaching and research in 
the different fields presented in the book. Several of the experiments, 
calculations or models are the result of their research in these areas and 
open up several questions for further research in the field. 

 
—A.L. Capparelli 



 



CHAPTER 1 

CHANGES OF STATE IN PURE SUBSTANCES 
1.1 Introduction 

Pure substances can be found in nature in various aggregation states 
depending on temperature (T), pressure (P) or any external intensive 
variable that influences them. The most common aggregation states are: 
solid (with various allotropic forms), liquid, and gaseous. A sample of a 
pure substance will evolve spontaneously, decreasing its chemical 
potential (). However, we must remember that this alternative way of 
expressing the spontaneous evolution of a system originates in the 
tendency of the universe to an 
ever increasing disorder. 

The most stable aggregation 
state will have the lowest 
chemical potential (at given 
values of temperature and 
pressure), and a sample of a 
substance will evolve towards 
that state. For example, the 
sample will tend to evaporate if 
the chemical potential of the gas 
is less than that of the liquid. If 
the chemical potentials of two 
aggregation states are equal, both 
states coexist in equilibrium, and 
we say that the system has two 
phases.  

A phase is a portion of the system having uniform intensive properties, 
for example, a liquid phase always has the same density, regardless of the 
portion of liquid that we consider. This liquid phase is distinguished from 
the gas phase because it has a different density and, in general, other 
intensive properties are also different. 

Fig. 1.1 shows the typical dependence of the chemical potential on 
temperature of the solid, liquid, and gas states of a pure substance. The 
slopes of the curves determine the molar entropy (s) according to the 
equation 

Figure 1.1: Dependence of the chemical 
potential on temperature of the solid, 
liquid, and gas states of a pure substance 
(Atkins and de Paula 2006). 
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൬𝜕𝜇𝜕T
൰௉ = −𝑠 

The chemical potential also depends on pressure and  

൬𝜕𝜇𝜕𝑃൰் = 𝑣 

where 𝑣 is the molar volume, also an intensive property of a pure 
substance, which takes different values in the various aggregation states. 

Phase diagrams are representations showing the regions of pressure 
and temperature (and any other intensive properties that affect the state of 
a substance) where the solid, liquid, and gas phases are stable. These 
phases are generally represented by their molar volume. The phase 
diagrams of pure substances have at least three dimensions (V, P, and T). 

 

 
Figure 1.2: Typical three-dimensional phase diagram and its two more often used 
two-dimensional projections. 

Fig. 1.2 shows a typical phase diagram. For simplicity, two-dimensional 
projections are often used in the P-T and P-V planes (Fig. 1.3). 
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In the P-T diagram, the triple point and the critical point can be 

distinguished. At the triple point, the three aggregation states coexist in 
equilibrium. The critical point marks the end of the coexistence curve 
between the liquid and the vapour. Above the critical temperature (𝑇௖), the 
densities (or the molar volumes) of the liquid and of the vapour are equal 
(𝛿௟  =  𝛿௚, 𝑣௟  =  𝑣 ௚). Solid lines in Fig. 1.3a indicate the coexistence 
conditions of two phases. 

The Clapeyron equation allows obtaining an expression for these limits 𝑑𝑃𝑑𝑇 = Δs𝛥𝑣 

By considering the relationship between entropy and enthalpy (H) at 
melting, sublimation, and vaporization temperatures (at constant pressure), 
specific expressions are derived for each of the lines. 

 
Solid-liquid boundary 𝑑𝑃𝑑𝑇 = ΔH୫୫T𝛥𝑣௠  

This equation can be integrated by neglecting the dependence of 𝛥𝑣௠ 
on temperature and taking the triple point (tp) as a reference 

Figure 1.3: P-T (a) and P-v (b) diagrams, with typical two-phase and three-
phase coexistence regions. 
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𝑃 = 𝑃௧௣ ൅ ൬ΔH୫୫𝛥𝑣௠ ൰ 𝑙𝑛 ቆ 𝑇𝑇௧௣ቇ 

Liquid-gas boundary 𝑑𝑃𝑑𝑇 = Δ𝐻୫୴𝑇Δv୴  

 
Since the molar volume of a gas is greater than that of a liquid, we can 

write 𝛥𝑣௩  =  𝑣௚  and also suppose that steam behaves like an ideal gas, so 
that 𝑣௚ = ோ௉் . These approximations lead to the Clausius-Clapeyron 
equation 𝑑ሺ𝑙𝑛𝑃ሻ𝑑𝑇 = Δ𝐻୫୴𝑅𝑇ଶ  

that can be integrated taking the triple point as a reference 

𝑃 = 𝑃௧௣𝑒𝑥𝑝 ቈ−Δ𝐻୫୴R ቆ1𝑇 − 1𝑇௧௣ቇ቉ 
Solid-gas boundary 
 
The above approaches can be made at this border. Clausius-Clapeyron 

equation is now 

𝑃 = 𝑃௧௣𝑒𝑥𝑝 ቈ−Δ𝐻୫ୱR ቆ1𝑇 − 1𝑇௧௣ቇ቉ 
 
Fig 1.3b shows the P-V phase diagrams. Below the critical temperature 

(𝑇௖), the liquid-gas coexistence region reveals discontinuities in the molar 
volume. The same occurs in the solid-vapour coexistence zone. At high 
temperatures and low pressures, the isotherms resemble those predicted by 
the ideal gas law 
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𝑃𝑣 = 𝑅𝑇 

At low temperatures and high pressures, all real gases exhibit 
deviations from ideal behaviour. The molecular origin of the deviations is 
the interaction between particles, and one way to quantify them is through 
the virial equations of state  

𝑃𝑣 = 𝑅𝑇 ቄ1 + 𝐵 𝑣ൗ + 𝐶 𝑣ଶൗ + ⋯ቅ 
where B, C, etc. are known as the second, third, etc. virial coefficients.  

 
Deviations from ideal behaviour can also be expressed in terms of the 

compressibility factor 

𝑍 = 𝑃𝑣𝑅𝑇 

for an ideal gas Z = 1, and its deviation is a measure of the imperfection of 
the gas. Fig. 1.4a shows the Z values for various gases at various 
temperatures. These apparently so different curves can be joined if the 
reduced variables are considered as in Fig 1.4b 

𝑇௥ = 𝑇𝑇௖ 
𝑃௥ = 𝑃𝑃௖ 𝑣௥ = 𝑣𝑣௖ 
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This behaviour agrees with Van der Waals' idea that gases confined in 
the same reduced volume and at the same reduced temperature would 
exert the same reduced pressure. This observation is also known as the law 
of corresponding states and is an example of what we will call universal 
behaviour. 

 
1.2 Four real systems 

 
The experimental phase diagram of water is shown in Fig. 1.5. The 

solid-liquid curve summarizes the dependence of the melting temperature 
on pressure. At low pressures the slope is negative because Δv୤ < 0, i.e. 
the water contracts when melting, or the density of the solid (ice) is lower 
than that of the liquid, and therefore ice floats. Indeed, the crystal lattice of 
ice is very open, stabilized by hydrogen bonds. At higher pressures other 
crystalline structures are stable, giving rise to different types of ice. 

Fig. 1.6 shows the phase diagram of carbon dioxide (CO2). The 
coexistence lines show the characteristic behaviour. The triple point is 
found at values higher than the normal pressure of 1atm, thus in this 
condition, CO2 sublimes going from solid to gas. 
  

Figure 1.4: (a) Z values for different real gases: nitrogen (circles), propane
(open squares), ethene (filled squares). (b) The law of corresponding
states: the curves in a) collapse into master curves by using reduced
variables. Each curve in (b) corresponds to a given reduced temperature
(Atkins and de Paula 2006). 
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Figure 1.5: P-T phase diagram of pure water. Note the different types of ice 
(Atkins and de Paula 2006). 
 

The phase diagram of carbon is shown in Fig 1.7. Under normal 
pressure and temperature conditions, the thermodynamically stable phase 
is graphite. This means that a diamond piece should spontaneously 
transform into graphite. For this to happen, the crystalline structure must 
change. Although this change is spontaneous, it is extremely slow to be 
perceptible on the time scales of human life. 

Fig. 1.8 shows the 4He phase diagram. Helium behaves in an unusual 
way at low temperatures. For example, the solid and gas phases never 
coexist. Instead, there are two liquid phases that coexist with the gas at the 
triple point. The liquid (I) phase has the usual characteristics of a liquid, 
while the liquid (II) phase is superfluid, it flows with zero viscosity. The 
phenomenon of superfluidity will be discussed in Chapter 8. 

 
1.3 Thermodynamics of phase transitions 

 
Phase transitions occur with abrupt changes in the intensive properties 

of the system. Fig. 1.1 shows the changes in chemical potential (the molar 
Gibbs energy) with temperature. This function is mathematically continuous, 
but its derivative has a discontinuity that indicates the phase transition. 

The following equations relate the chemical potential and its 
derivatives to the other thermodynamic quantities in processes involving a 
pure substance 
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𝑑𝜇 = 𝑣𝑑𝑃 − 𝑠𝑑𝑇 ൬𝜕𝜇𝜕𝑇൰௉ = −𝑠 ൬𝜕𝜇𝜕𝑃൰் = 𝑣 ሺ𝑑𝐻௠ሻ௉ = 𝑇𝑑𝑠 𝐶௠,௣ = ൬𝜕𝐻௠𝜕𝑇 ൰௉ = 𝑇 ቆ𝜕ଶ𝜇𝜕𝑇ଶቇ௉ 

 

 
 
Figure 1.6: Phase diagram of carbon dioxide (CO2) (Atkins and de Paula 2006). 
 

 
 
Figure 1.7: Phase diagram of carbon and different phases including those obtained 
in laboratory conditions (fullerenes, nanotube, amorphous phase, and lonsdaleite) 
(Atkins and de Paula 2006). 
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Figure 1.8: Phase diagram of pure helium. Liquid (I) is a normal liquid, while 
liquid (II) is a superfluid (Atkins and de Paula 2006). 
 

Fig. 1.9a shows how these magnitudes vary in phase transitions such as 
solidification, sublimation, condensation, etc. The first derivatives of the 
chemical potential are discontinuous, and for this reason they are called 
first-order phase transitions. In these transitions the heat capacity tends to 
infinity at the transition temperature. 

Continuous phase transitions are changes in which discontinuities 
occur in the second derivatives of the chemical potential. 

In the second-order phase transitions (Fig. 1.9b) the heat capacity takes 
on finite values at both sides of the critical point. Second-order transitions 
are: the order-disorder transitions in alloys, the conductor-superconductor 
transition in the absence of a magnetic field. 

In lambda transitions the heat capacity tends to infinity only from 
lower than critical values. A characteristic lambda transition is the fluid-
superfluid transition in 4He. 

This classification of phase transitions is a reasonable generalization of 
the Ehrenfest criteria. 

Currently, the classification of phase transitions is more elaborate and 
we will present it throughout this text. This starting point, however, allows 
us to establish some basic concepts that we will gradually generalize and 
discuss below. 

First-order phase transitions can be detected by analysing the 
dependence of the molar volume or density of the system on temperature. 
We then have a control parameter (temperature) which is an intensive 
quantity that can be externally varied to modify the state of the system. 
Eventually, the control parameter may be pressure, magnetic field, etc. We 
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will say that the control parameter takes its critical value if it takes the 
value at which the phase transition occurs. This term generalizes the 
critical point concept used previously. 

The free energy of the system, and then its Hamiltonian, must depend 
on the order parameter. The importance of this statement will be revealed 
later. 

In phase transitions, the order parameter undergoes an abrupt change at 
the critical point. We say that the system changes from an ordered state 
(associated with an order parameter value greater than zero) to a 
disordered state (associated with an order parameter value equal to zero). 

For the transitions studied in this chapter, the order parameter is 𝜑 = 𝛿௟ − 𝛿௚ 

Critical opalescence is an optical phenomenon that can be observed at 
the liquid-gas interface near the critical point. It is associated with 
fluctuations in density (or the order parameter). Both behaviours will be 
discussed later. 

 

 
 
Figure 1.9: Variation of the thermodynamic variables with temperature near the 
critical point. (a) First-order phase transition, (b) second-order phase transition 
(Atkins and de Paula 2006). 

 
 
 
 
 



CHAPTER 2 

PHASE TRANSITIONS IN CRYSTALLINE SOLIDS 
2.1 Perfect crystalline solids 

 
Many phase transitions in crystalline solids are of first order such as 

those studied in Chapter 1. The crystalline structure changes in the 
transition; the control parameters are temperature and pressure (T, P). In 
this chapter we discuss some basic concepts of crystallography and solid 
state theory (Ashcroft and Mermin, 1976). The discussion will be focused 
on the concept of order, while its variations will be addressed in the next 
chapters. We also present one of the most important experimental 
techniques of the 20th century in this discipline, X-ray diffraction. 

 
A perfect crystalline solid has infinite translational symmetry. Let us 

consider a regular arrangement of points in space, as shown in Fig. 2.1, 
and let 𝑎⃗, 𝑏ሬ⃗ , and  𝑐 be three vectors that define a unit cell. The translational 
symmetry condition is expressed as 

 
 𝑅ሬ⃗ ௠ = 𝑅ሬ⃗ ଴ + 𝑡௠ 
 𝑡௠ = 𝑚ଵ𝑎⃗ + 𝑚ଶ𝑏ሬ⃗ + 𝑚ଷ𝑐 
 

where m1, m2, m3 are integer numbers.  
A unit cell is one that is capable of generating the crystal lattice by 

translation. If the unit cell also contains a single point of the lattice, it is 
called a primitive cell. 

The Voronoi or Wigner-Seitz cell is a primitive cell constructed from 
the bisectors to the segments, joining an atom with its neighbours (Fig. 
2.2). 

A perfect crystalline solid can be described with a single Wigner-Seitz 
cell. If instead an infinite number of different cells are required, the solid 
is amorphous, (there is no crystalline arrangement). A finite number of 
Wigner-Seitz cells are found in polycrystals and quasicrystals. 
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Figure 2.1: A Wigner-Seitz primitive cell constructed for an arbitrary arrangement 
of points 
 

 
 
Figure 2.2: A perfect crystalline solid is generated by the translation of a single 
unit cell defined by three vectors. 
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Figure 2.3 (left): The five Bravais lattices in a two-dimensional geometry. From 
top to bottom: oblique, square, hexagonal, rectangular, centred rectangular. 

 
Figure 2.4 (right): The 14 Bravais lattices in three dimensions: (a) simple cubic, (b) 
body-centred cubic, (c) face-centred cubic, (d) simple orthorhombic, (e) base-
centred orthorhombic, (f) body-centred orthorhombic, (g) face-centred 
orthorhombic, (h) rhombohedral, (i) hexagonal, (j) tetragonal, (k) body-centred 
tetragonal, (l) simple monoclinic, (m) base-centred monoclinic, (n) triclinic. 

In geometry and crystallography, the Bravais lattices are arrangements 
of discrete points whose structure is invariant under a certain group of 
translations. In most cases they also present rotational symmetry. These 
properties make that the perspective of the lattice be the same from each 
node of a Bravais lattice, i.e. the points of a Bravais lattice are all 
equivalent. 

Group theory has shown that there is only a single one-dimensional 
Bravais lattice, 5 two-dimensional lattices (Fig. 2.3), and 14 different 
three-dimensional Bravais lattices (Fig. 2.4). 

Bravais lattices are grouped into crystal systems according to symmetry 
operations. Fig. 2.5 shows the crystal systems with their Bravais lattices in 
3D. 
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More complex crystal structures can be described in terms of a periodic 
arrangement of a basis element. 

An important concept in crystallography refers to Miller's indices, 
which are used to indicate crystallographic plane orientations.  Miller's 
indices are indicated by the letters (h, k, l). 

 

 
 
Figure 2.5: Crystal systems and their corresponding Bravais lattices in 3D. 
 

 
 
Figure 2.6: The crystallographic plane orientations are indicated by the Miller’s 
indices, which are given between brackets bellow each example in the figure. 
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To obtain them   we first determine the intersection points of the plane 
with the coordinate system axes (Fig. 2.6). 

Let (m, n, p) be these intersection points, the indices (h, k, l) are  

ℎ = 𝐴𝑚 , 𝑘 = 𝐴𝑛 , 𝑖 = 𝐴𝑝 

where A is the least common multiple of (m, n, p). 
Index zero corresponds to a plane parallel to an axis. Negative index 

will be indicated with a hyphen above it. If the plane passes through the 
origin, it will move to an equivalent position in the cell. A family of planes 
will be indicated by enclosing the indices in braces {h, k, l}. 

 
2.2 X-ray diffraction 

 
Diffraction is an optical phenomenon that allows the identification and 

study of the characteristics of a regular array of points. It can be 
experimentally observed when a small obstacle or slit is illuminated with 
coherent radiation of wavelength () similar to the object size. Two slits 
spaced a small distance (d) apart produce the interference pattern shown in 
Fig. 2.7.  
 

 
 
Figure 2.7: A typical interference pattern of two slits. The intensity of each spot of 
light is modulated by the diffraction pattern of a single slit.  
 

A set of many point slits constitute a diffraction lattice, which produces 
intense lines of light. The line positions depend on the wavelength of the 
incident light and the distance between the slits, and are given by 𝑑𝑠𝑖𝑛𝜃௡ = ±𝑛𝜆
where n is an integer. 
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In a crystal lattice, the cell size is about 1Å (10-10m), so the 
corresponding wavelength is in the X-ray region of the electromagnetic 
spectrum. The energy involved is calculated as 

𝐸 = ℎ 𝑐𝜆 = 12𝐾𝑒𝑉 

where c is the speed of light in vacuum and h the Planck constant. 
Subatomic particles are also used in diffraction experiments as they 

exhibit dual behaviour. 
Neutron diffraction is used to study crystal structures with magnetic 

properties or light elements. These particles do not interact with the 
electrons of the crystalline solid but directly with the nuclei. Neutron 
beams are generated in nuclear reactors, and the required energy is 
calculated as 

𝐸 = 𝑝2𝑚ଶ = 12𝑚൬ℎ𝜆൰ଶ 

where p is the neutron momentum and m is its mass. 
 

 

Figure 2.8: A typical X-ray spectrum produced in an X-ray tube. The background 
is a continuous spectrum called Bremsstrahlung spectrum. Monochromatic beams 
are K1, K2, and K, whose wavelengths depend on the chemical nature of the 
target in the tube (Pecharsky and Zavalij, 2009). 
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Figure 2.9 (left): Scheme of an X-ray tube 
 
Figure 2.10 (right): Monochromatic X-rays are generated by de-excitation of inner 
layer electrons of the target in an X-ray tube. The nomenclature considers the 
energy levels involved. 
 

Electron diffraction is used to study surface structures. These particles 
strongly interact with the electrons of the crystalline solid and penetrate 
just a few atomic layers. 

X-rays are generated due to deceleration of a very energetic electron 
beam (𝐸~10𝐾𝑒𝑉) that collides with a metallic target. This deceleration 
produces a continuous X-ray spectrum, the "braking radiation" or 
Bremsstrahlung. In addition, the atoms of the metallic material also emit 
monochromatic X-rays. These characteristic emission lines of the material 
are used in diffraction experiments (Fig. 2.8). 

X-rays are produced in laboratories by using X-ray tubes. They are 
made up of two electrodes (cathode and anode); a filament to release 
electrons and a target inside a glass evacuated envelope (Fig. 2.9). 

The electrons are accelerated trough a potential difference (∆𝑉) 
between the cathode and the anode. Radiation occurs in the electron 
impact zone and is emitted in all directions. 
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The energy of the electrons is 𝐸 = 𝑒∆𝑉 

where e is the magnitude of the electron charge.  
 

Monochromatic X-rays are generated when incident electrons excite 
inner layer electrons of target atoms. Subsequent de-excitation produces 
specific wavelength radiation dependent on the chemical composition of 
the target. X-ray emissions are designated as K, L, etc., as shown in Fig. 
2.10. 

The diffraction condition in crystallography is known as Bragg's Law 
 2𝑑𝑠𝑖𝑛𝜃௡ = ±𝑛𝜆
 

In Laue's formulation, each point of a crystal lattice can be considered 
as a scattering centre of radiation. The scattering does not change the 
frequency of the radiation.  

We represent a radiation wave as 𝑒௜௞ሬ⃗ .௥⃗, with 𝑘ሬ⃗ = ଶగఒ 𝑘ෘ . According to 
Fig. 2.11, the total constructive interference condition for two points is 

 𝑑𝑠𝑖𝑛𝜃 + 𝑑𝑠𝑖𝑛𝜃ᇱ = 𝑑. ൫𝑘ෘ − 𝑘ෘᇱ൯ = 𝑛𝜆 
 𝑑. ൫𝑘ሬ⃗ − 𝑘ሬ⃗ ′൯ = 2𝜋𝑛 

 

 
 
Figure 2.11: Scattering of radiation in a crystal lattice. The optical path difference 
causes a phase difference so that only waves scattered at specific angles interfere 
constructively (Laue’s condition) (Pecharsky and Zavalij, 2009). 
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where n is integer. The condition for the whole crystal lattice is 
 𝑡௠. ൫𝑘ሬ⃗ − 𝑘ሬ⃗ ′൯ = 2𝜋𝑛 
 𝑒௜௧⃗೘.൫௞ሬ⃗ ି௞ሬ⃗ ᇱ൯ = 1 
 

This is the condition for constructive interference or Laue's condition. 
 

2.3 Description in the reciprocal space 
 
The reciprocal lattice plays a fundamental role in most analytic studies 

of periodic structures, particularly in the theory of diffraction.  
We can define a vector 𝐾ሬሬ⃗ = 𝑘ሬ⃗ − 𝑘′ሬሬሬ⃗  so that 

 Kሬሬ⃗ ௠ᇱ = 𝑚′ଵ𝑎∗ሬሬሬሬ⃗ + 𝑚′ଶ𝑏∗ሬሬሬ⃗ + 𝑚′ଷ𝑐∗ሬሬሬ⃗  

where 𝑚ଵᇱ ,𝑚ଶᇱ  𝑎𝑛𝑑 𝑚ଷᇱ  are integers and  

𝑎∗ሬሬሬሬ⃗ = 2𝜋 𝑏ሬ⃗ × 𝑐𝑎⃗. (𝑏ሬ⃗ × 𝑐) , 𝑏∗ሬሬሬ⃗ = 2𝜋 𝑐 × 𝑎⃗𝑎⃗. (𝑏ሬ⃗ × 𝑐) , 𝑐∗ሬሬሬ⃗ = 2𝜋 𝑎⃗ × 𝑏ሬ⃗𝑎⃗. (𝑏ሬ⃗ × 𝑐) 

Then Laue’s condition is fulfilled since 
 Kሬሬ⃗ ௠ᇱ. 𝑡௠ = 2𝜋(𝑚ᇱଵ𝑚ଵ + 𝑚ᇱଶ𝑚ଶ + 𝑚ᇱଷ𝑚ଷ) 

We say that a*, b*, and c* are the primitive vectors that generate the 
reciprocal space to which Kሬሬ⃗ ௠ᇱvectors belong. 

Any crystal can be described by a lattice in the direct space or by one 
in the reciprocal space. Both descriptions are equivalent and contain 
exactly the same information. 

We observe the direct lattice with microscopy techniques, which allow 
us to identify each of the atoms that make up the lattice. The reciprocal 
lattice is observed in the diffraction image of the crystal. 

As Kሬሬ⃗ ௠ᇱ = 𝑘ሬ⃗ − 𝑘ᇱሬሬሬ⃗ and |𝑘|ሬሬሬሬሬ⃗ = ห𝑘ᇱሬሬሬ⃗ ห, then 𝑘ሬ⃗ . Kሬሬ⃗ ௠ᇱ = ଵଶ ห𝐾ሬሬ⃗௠ᇱหଶ.This condition 
defines the Bragg planes, as shown in Fig. 2.12. 
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Figure 2.12: A Bragg plane is perpendicular to the vector 𝑲ሬሬሬ⃗  and bisector of the 
segment ห𝑲ሬሬሬ⃗ ห. 
 
Figure 2.13: A line of points in the direct space (a) is described in the reciprocal 
space as a family of planes (b). 

 
From Laue’s condition for a family of planes with Miller’s indices 

{h,k,l} we have 

ห𝐾ሬሬ⃗ ௛௞௟ห = 2𝜋𝑛𝑑௛௞௟ 
where 𝑑௛௞௟ is the distance between planes. 

So the condition of constructive interference for the family of planes 
{h, k, l} of the direct lattice is verified at the point (h, k, l) of the reciprocal 
lattice, whose projection is observed in the diffraction image. 

Let us consider equally spaced points along the x axis in the direct 
space, as shown in Fig. 2.13 a), the density of the points of the lattice is 
written as 𝜌(𝑟) = 𝛿(𝑟 −𝑚ଵ𝑥ු) 
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The Fourier transform (FT) of 𝜌(𝑟) is 

𝜑൫𝑘ሬ⃗ ൯ = 𝛿(𝑘ሬ⃗ − 2𝜋𝑎 𝑘ෘ௫) 

It represents a family of planes equally spaced in the reciprocal space, 
perpendicular to the kx axis (Fig. 2.13b). These are the Bragg planes. 

By considering a three-dimensional lattice in the direct space 𝜌(𝑟) = 𝛿(𝑟 − 𝑡௠) 

the FT is  𝜑൫𝑘ሬ⃗ ൯ = 𝛿(𝑘ሬ⃗ − 𝐾ሬሬ⃗ ௠ᇱ) 

The reciprocal lattice therefore represents the Fourier transform of the 
direct lattice. 

The intensities of the diffraction spots are proportional to the structure 
factors 

𝐹௄ሬሬ⃗ = ෍𝑓௝𝑒௜௄ሬሬ⃗ ೓ೖ೗.௥⃗ೕ௝  

where the sum runs over the elements of the basis, and fj’s and rj’s are 
their form factors and positions respectively.  

A face-centred cubic lattice (fcc) can be considered as a simple cubic 
lattice plus a basis of four atoms that are supposed to be the same element 
(Fig. 2.14a). In this case 𝐹௄ሬሬ⃗ = 𝑓(1 + 𝑒ି௜గ(௛ା௞) + 𝑒ି௜గ(௞ା௟) + 𝑒ି௜గ(௛ା௟)) 
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Figure 2.14: Two Bravais lattices described as a simple cubic lattice plus a basis of 
(a) four atoms and (b) two atoms. 
 

Only the diffraction spots corresponding to the h, k, l indices, which 
may be either all even or all odd, will be seen. 

A body-centred cubic lattice (bcc) can be considered as a simple cubic 
lattice plus a basis of two atoms that are supposed to be the same element 
(Fig. 2.14b). In this case 𝐹௄ሬሬ⃗ = 𝑓(1 + 𝑒ି௜గ(௛ା௞ା௟)) 

Only the diffraction spots corresponding to families of planes with 
h+k+l=even will be seen. 

Diffraction is a powerful experimental technique that reveals order in 
different structures. Simple crystalline solids are the simplest examples, 
but surfaces (Chapter 3), macromolecules, liquid crystals (Chapter 6), etc. 
may also be mentioned. We will see examples in which the structure factor 
in a diffraction experiment can be related to the order parameter, whose 
change indicates the existence of a phase transition. 
 


