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PREFACE 
 
 
 
In the first part of this book mathematical modelling of some natural 

phenomena such as tsunami waves and tornado dynamics is presented. 
The study of the propagation of tsunami from their small disturbance at 
sea level to the size they reach approaching the coast has interested many 
scientists. It is clear that in order to predict accurately the appearance of 
tsunami it is fundamental to build up a good model. The thrust of the 
mathematical approach is to examine how a wave, once initiated, moves, 
evolves and eventually becomes such a destructive force of nature. The 
previous considerations show that from initiation to reaching the region of 
the shore, a good approximation of tsunami waves is provided by the 
solutions of the corresponding model equation. In the original physical 
variables this means that up to the near-shore the wave profile remained 
unaltered propagating at constant speed. The linear model breaks down 
when the tsunami waves enter the shallower water of the shore regions. 
Therefore, the appropriate equations are those modelling the propagation 
of long water over variable depth. In this region faster wave fronts can 
catch up slower ones and this can result in large amplitude wave fronts 
building up behind the smaller ones. 

Even with the aid of the most advanced computers it is not possible to 
find the exact solutions to the non-linearity governing equations for water 
waves. For this purpose we introduce the Cellular Nonlinear Network 
(CNN) approach. Quantifying the dynamics of tsunami waves as they 
impact on shore areas is a challenging mathematical and physical problem 
of the outmost importance. In this part of the book we shall discuss the 
different mathematical models of tsunami waves, such as KdV, shallow 
water equations, Camassa-Holm (CH), long water waves with nonlinear 
vorticity, the two-component CH system, etc. In order to study the 
dynamics of our models we use the CNN approach to discretize the 
governing equation over a suitable grid.  

In this part of the book we shall present one more model––tornado 
dynamics. Observations of the tornado have a rich history, provided by 
many papers only for the 20th century. Observations of the actual tornado 
indicate a strong non-linearity and non-equilibrium of processes in the 
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atmosphere during the formation and existence of a tornado that do not 
allow the creation of the perfect model of this exotic phenomenon. To gain 
some insight into the processes involved we shall set up a numerical 
approach via the Cellular Nonlinear Network (CNN) that treats a vortex as 
a fluid dynamical system. 

In the second part of the book we shall study some models arising in 
neuroscience. Nonlinear reaction-diffusion types of equations are widely 
used to describe phenomena in different fields, such as the biology-Fisher 
model, the Hodgkin-Huxley model and its simplification––the FitzHugh 
Nagumo nerve conduction model, etc. The famous Hodgkin-Huxley 
neuron model is the first mathematical model describing neural excitation 
transmission derived from the angle of physics and lays the basis of 
electrical neurophysiology. The FitzHugh Nagumo equation, which is a 
simplification of the Hodgkin-Huxley model, describes the generation and 
propagation of the nerve impulse along the giant axon of the squid. The 
FitzHugh Nagumo systems are of fundamental importance for understanding 
the qualitative nature of nerve impulse propagation. In this part of the 
book we shall study a coupled FitzHugh Nagumo neural system and the 
phenomenon "edge of chaos". It was shown that the difference in 
behaviour is due to different bifurcation mechanisms of excitability. For 
dynamical systems in neuroscience, the type of bifurcation determines the 
computational properties of neurons. Based on the finite propagating speed 
in the signal transmission between the neurons, in this part of the book we 
shall present various FitzHugh Nagumo neural systems and study their 
dynamics via CNN approach. 

The book is addressed to a broader audience including graduate 
students, PhD students, mathematicians, physicists, engineers and 
specialists in the domain of Partial Differential Equations (PDE) and their 
applications. Certainly, there are monographs on nonlinear PDE based on 
complicated and difficult methods that make reader acceptance hard, 
especially for beginners and non-specialists on PDE. In this sense the 
proposed book aims to provide a simpler approach, based on Cellular 
Nonlinear Networks for modelling and studying nonlinear waves such as 
tsunami waves, tornados and travelling waves in FitzHugh Nagumo neural 
systems. 

 
 

Sofia,   Angela Slavova 
Firenze, 2016    Pietro Zecca 

 



PART I. 

 MODELLING ENVIRONMENTAL  
PROBLEMS VIA THE CELLULAR NONLINEAR 

NETWORKS APPROACH  



CHAPTER ONE 

STUDY OF SHALLOW WATER WAVES  
 
 
 

Introduction 

The December 2004 tsunami, generated on Sunday, 26 December 2004 
at 7:58 am (local time, Indonesia) by the most powerful earthquake in 
decades, killed more than 275,000 people [124] and made millions 
homeless, making it one of the most destructive natural disasters in 
history. The hypocentre of the earthquake was about 30 km below the 
floor of the Indian Ocean, at 160 km off the west coast of the Indonesian 
island of Sumatra, and the violent movement of the Earth’s tectonic plates 
displaced an enormous amount of water, sending tsunami waves 
westwards across the Indian Ocean as well as eastwards across the 
Andaman Basin. Since the earthquake occurred over about 10 minutes 
along a 1000 km long approximately straight fault line, the generated 
tsunami waves were approximately two-dimensional [106, 107], that is, 
the motion was approximately identical in any direction parallel to the 
crest line. Within hours these waves crashed upon the coastline of 11 
Indian Ocean countries, snatching people out to sea, drowning others in 
their homes or on beaches, and demolishing property from South Africa to 
Thailand. The catastrophic devastation wrought by the tsunami occurred 
primarily on the shores of the Bay of Bengal and of the Andaman Basin 
but substantial damage was also documented in Somalia (some 5000 km to 
the west of the epicentre) and large waves were noticed as far as 
Madagascar and South Africa. For modelling purposes, outside of the Bay 
of Bengal the two-dimensional character of the tsunami waves can no 
longer be taken for granted since diffraction around islands and reflection 
from steep shores alter this feature considerably. The earthquake that 
generated the tsunami changed the shape of the ocean floor by raising it by 
a few metres to the west of the epicentre and lowering it to the east (over 
100 km in the east-west direction and about 900 km in the north-south 
direction) [107]. The initial shape of the wave pattern that developed into 
the tsunami wave featured therefore to the west of the epicentre a wave of 
elevation followed by a wave of depression (that is, with water levels 
higher and respectively lower than normal), while to the east of the 



Study of Shallow Water Waves  
 

3 

epicentre the initial wave profile consisted of a depression followed by an 
elevation. The tsunami waves to the west of the epicentre propagated 
approximately 1600 km across the Bay of Bengal in the Indian Ocean 
towards India and Sri Lanka, hitting in less than 3 hours the coastal 
regions of India and Sri Lanka, the first tsunami wave being a wave of 
elevation [37, 107]. The tsunami wave to the east of the epicentre crossed 
the 700 km distance across the Andaman Basin in less than 2 hours, with a 
leading wave of depression as it hit resorts in Thailand [41, 107]. Several 
reports of seaside villages in Thailand confirmed that the first evidence of 
the tsunami was that the ocean receded rapidly and far. Many people were 
killed because they went to view the retreating ocean exposing the 
seafloor, unaware that the large wave of depression would be followed by 
several large waves of elevation (photographs reproduced in [37] show 
that the shoreline receded before the arrival of the first wave front at Hat 
Ray Leh beach in southern Thailand and two fronts, one closely behind the 
other and the second considerably larger, occurred at this time with the 
maximum height of the tsunami, as it came ashore at this location, of 
about 10 m). The fact that, as the tsunami waves reached the shore in 
either direction, the shape of the initial disturbance (first a wave of 
elevation, then a wave of depression, respectively vice-versa) was not 
altered is of utmost importance in validating a theory for the wave 
dynamics on this occasion. This observation suggests that perhaps the 
shape of the tsunami waves remained approximately constant as they 
propagated across the Bay of Bengal and across the Andaman Basin. This 
hypothesis is further substantiated by the accurate measurements of the 
water’s surface (the spatial scale of the coverage being about 800 km) 
performed by a radar altimeter on board a satellite about two hours after 
the earthquake took place, along a track traversing the Indian Ocean/Bay 
of Bengal [41]. These clearly show a leading wave of elevation, followed 
by a wave of depression, a feature common both to the initial wave profile 
west of the epicentre and to the tsunami as it entered the coastal regions of 
India and Sri Lanka. These measurements also confirm another essential 
feature of tsunami waves: even though these waves reach large amplitudes 
due to the diminishing depth effect as they approach the shore (waves as 
high as 30 m were observed near the city Banda Aceh on the west coast of 
the northern tip of Sumatra [70] about 160 km away from the epicentre of 
the earthquake), tsunami waves are barely noticeable at sea due to their 
small amplitude. Indeed, the satellite data show that the maximum 
amplitude of the waves, whether positive or negative with respect to the 
usual sea level, was less than 0.8m over distances of more than 100 km. To 
get a sense of how mild this disturbance is, we point out the delightful 
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argument from [107]: sitting in a boat in the Bay of Bengal, midway 
between Sumatra and Sri Lanka, it would take a tsunami wave component 
(whether a wave of elevation/depression) with a wavelength of 100 km 
about 10 minutes to move past the boat, time in which the boat would 
move up/down by 0.8m, and then back down/up by 0.8m. For these 
estimates the assumption was made (see [107]) that the tsunami wave 
speed is at least 620 km/h, a hypothesis that is confirmed by the 
considerations made in the next chapters. 

To predict accurately the appearance of a tsunami it is of paramount 
importance to model these powerful waves, explaining the propagation 
mechanism as well as the process by which they evolve from a small-
amplitude disturbance of the sea level (albeit one of large wavelengths, in 
excess of 100 km) to become such devastating forces of nature as they 
approach the coast. 

Shallow water theory 

Perhaps the most important scientific discovery of the last decades in 
the context of water waves was soliton theory. Solitons arise as special 
solutions of a widespread class of weakly nonlinear dispersive partial 
differential equations modelling water waves, such as the Korteweg-de 
Vries (KdV) [48] or Camassa-Holm (CH) equation [18], representing to 
various degrees of accuracy approximations to the governing equations for 
water waves in the shallow water regime (see the discussion in [38]). 
Informally, dispersion means that different harmonic components of a 
solution travel at different velocities determined by the frequency, so that 
within the framework of linear theory, even though energy is preserved 
due to the neglecting of dissipative effects, the different components of a 
solution spread out and consequently the solution at later times tends to 
have a much smaller amplitude than initially. At the weakly nonlinear 
level, however, in certain regimes, non-linearity balances dispersion and 
permanent and localized wave forms travelling at constant speed (“solitary 
waves”) arise as solutions. If such solitary waves present elastic interaction 
in the sense that as a result of the nonlinear interaction with other waves of 
this type, they emerge from the collision unchanged, except for a phase 
shift, we say that the solitary waves are solitons [48]. Examples of 
equations relevant to water waves with soliton solutions are KdV and CH. 
When first encountered, the situation we refer to might seem perplexing: 
in talking about the propagation of shallow water waves, in addition to 
KdV there exists the regularized long wave equation [82] (usually called 
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BBM [11]), which provides an approximation of the governing equations 
for water wave equations in the shallow water regime of the same 
accuracy as KdV (CH arises as a higher-order approximation [38]), whose 
solitary waves have even similar expressions. The solitary waves of KdV 
equation are solitons [48] while those of BBM are not [77]. This apparent 
paradox is however easily resolved. Given a physical situation, under 
certain simplifying assumptions established laws from physics can be 
applied to obtain a model of the physical process. Investigating the 
behaviour of the model by mathematical methods, our understanding of 
the physical phenomenon can be improved. The conclusions reached will 
reflect reality (that is, specific physical situations which may be observed 
experimentally) only insofar as the accuracy of the model permits: the 
value of a model depends on the number of physically useful deductions 
which can be made from it. The “truth” of the model is meaningless as all 
experiments contain inaccuracies of measurement and effects other than 
those accounted for cannot be totally excluded. Even with the aid of the 
most advanced computers it is not possible to find exact solitary wave 
solutions to the nonlinear governing equations for water waves. The 
progress towards understanding solitary waves based on the governing 
equations for water waves is noticeable: localized disturbances of a flat 
water surface propagating without a change of form have to be two-
dimensional [42], the existence of two-dimensional solitary wave solutions 
was established [2], these waves have to be waves of elevation with a 
profile symmetric about the crest [30], and a qualitative description of the 
particle motion beneath the solitary wave is available [35]. Since an in-
depth study of solitary wave interactions using the governing equations is 
not within reach, to shed light on this important aspect one has to perform 
approximations leading to simplified model equations. 

The linear theory of waves of small amplitude does not provide any 
approximation to solitary waves (see [114]), so nonlinear approximations 
to the governing equations for water waves have to be made: KdV and 
BBM arise as weakly nonlinear approximations, with CH capturing more 
nonlinear effects [38]. In assessing the relative importance of these model 
equations the benchmark is provided by the degree to which they provide a 
description/explanation of specific important water wave phenomena 
encountered in nature. Soliton interactions of water waves occur in nature 
and can be reproduced in the laboratories, with the predictions made by 
KdV and BBM in close agreement with experimental measurements [106]. 
The solitary waves of KdV are orbital stable (meaning that their shape is 
stable under small perturbations) [9], [72], a feature valid also for BBM 
[9] and CH [40], [50], which explains why these wave patterns are physically  
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Figure 1.1 A tsunami as a large soliton 
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recognizable. The importance of KdV is further enhanced by the fact that 
an inverse scattering analysis which relies on structural properties of the 
equation (e.g. its Hamiltonian structure and associated integrals of motion) 
leads to the following dynamical picture: starting with arbitrary initial data 
that are smooth and sufficiently localized in space, the KdV solution that 
evolves from these data is developing into a finite number of localized 
solitary waves (solitons), plus an oscillatory tail (see [48]). Each solitary 
wave retains its localized identity and the taller waves travel faster than the 
smaller ones, while the oscillatory tail disperses and spreads out in space. 
Therefore the solution evolves into an ordered set of solitons, with the 
tallest in front, followed by an oscillatory tail that gradually fades out. This 
shows that the solitons are the key to understanding the dynamics of water 
waves as modelled by KdV. BBM is not integrable [80] so that the 
mechanism of solitary wave interactions is not as plain as for KdV. It is 
thus no accident that KdV plays a more important role in water wave 
theory than BBM (which remains a valid model equation but of more 
limited interest). As for CH, while it is integrable [34, 39], the dynamics of 
its soliton interactions is more intricate than for KdV so that it is mostly in 
the context of breaking waves that CH gained importance [13, 14, 34]. We 
are not concerned with this aspect here: we concentrate on the propagation 
of tsunami waves across the sea, and in this regard KdV is the proper 
model equation among the variety of shallow water models, as pointed out 
above. 

We are thus led to the fundamental question of whether tsunami waves 
enter the regime of validity of KdV as an approximation to the governing 
equations for water waves. A frequent view encountered throughout the 
research literature could be formulated as  

... a tsunami is produced by a large enough soliton. There may exist 
tsunamis not directly related to solitons but experts agree that the majority 
of registered tsunamis were produced by solitons. [51]  

However, it is not just because KdV is a model arising in the shallow 
water regime for waves of small amplitude that one can regard tsunamis at 
sea as manifestations of solitons, even if this is implied by several classical 
as well as more recent research papers [41, 67, 105, and 116]. The 
question is whether the geophysical scales involved lead to time- and 
space-scales that are compatible with those required for KdV theory.  
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Shallow water classification 

Let ℎ be an average depth of the water, ߣ is a typical wavelength of the 
wave and ܽ is typical amplitude. There are two important parameters ߝ = ௔௛, called the amplitude parameter, and the shallowness parameter ߜ =  ௛ఒ. According to these parameters rigorous validity ranges can be 
obtained for the main physical regimes encountered in modelling the two-
dimensional water waves: 

1. Shallow-water, large amplitude (ߜ ≪  leading at first ,(1~ߝ) ,(1
order to the shallow-water equations and at second order to the Green-
Naghdi model. In this case when the wavelength ߜ → 0 is increasing the 
stability properties of travelling water waves improve significantly. 
Moreover, one can prove the orbital stability of these waves which allows 
their shape to be stable under small perturbations. 

2. Shallow-water, medium amplitude regime (ߜ ≪  leading to (ߜ~ߝ) ,(1
the Serre equations and to the Camassa-Holm equation (CH). Unlike KdV, 
which is derived by asymptotic expansions in the equation of motion, CH 
is obtained by using asymptotic expansions directly in the Hamiltonian for 
Euler's equations in the shallow water regime. The novelty of Camassa 
and Holm's work was the physical derivation of the CH equation and the 
discovery that the equation has solitary waves (solitons) that retain their 
individuality under interaction and eventually emerge with their original 
shapes and speeds. For this reason CH is not appropriate for advancing 
insight into the propagation of tsunamis. 

3. Shallow-water, small amplitude or long-wave regime (ߜ ≪ 1), 
leading to the linear wave equation ߮௧௧ (ଶߜ~ߝ) − ߮௫௫ = 0           (1.1)  

with the general solution  ߮(ݔ, (ݐ =  ߮ା(ݔ − (ݐ ݔ)ି߮ + +  (1.2)       ,(ݐ

where a sign ± refers to a wave profile ߮± moving with unchanged shape 
to the right/left at constant unit speed. The small effects that were ignored 
at first order (small amplitude, long wave) build up on longer time/spatial 
scales to have a significant cumulative nonlinear effect so that on a longer 
time scale each of the waves that make up the solution (1.2) to (1.1) 
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satisfies the KdV equation. This regime leads to Boussinesq systems as 
well. 

4. Deep-water, small steepness regime (ߜ ≫ ߜߝ) ,(1 ≪ 1) leading to 
the full-dispersion Matsuno equations. 

We are interested in the small-amplitude long waves, in the limits ߝ → 0 and ߜ → 0. The regime ߝ =  emerges naturally since one (ଶߜ)ܱ
obtains a problem involving only a small parameter ߝ. It is in this regime 
that at first order the evolution of the waves is governed by the linear wave 
equation (1.1) with the general solution (1.2). The corresponding 
dimensional speed is ඥ݃ℎ଴ . Let us choose the wave moving to the right, 
then by means of the method of multiple scales it is possible to obtain in 
the region of (ݔ,  space more precise information about the evolution of (ݐ
the water's free surface by taking into account weakly nonlinear 
interactions. 

This can be achieved by showing that, to the next order of approximation 
the evolution of the leading order of the free surface is described by the 
KdV equation instead of the linear equation (1.1). The Boussinesq system 
is obtained by allowing the waves to travel in both directions. For our 
purposes it is more important to specify how solutions of KdV or 
Boussinesq approximate the free surface. The sharpest rigorous result in 
this direction is given in [66] and ensures that: given ߝ > 0, there exists ଴ܶ > 0 such that if ߝ = ,ݔ)then if one defines ߮ఌ ,(ଶߜ)ܱ (ݐ =  ߮ା(߬, ݔ −   ,(ݐ
where ߬ = ,߬)and ߮ା ߝ ݐ ߮) solves the KdV equation ߮ఝା + ଷଶ ߮ఝఝఝା  + ଵ଺ ߮ା߮ఝା = 0 

then for some ܣ > 0 independent of ߝ ∈ (0, ,ݔ)߮| :଴) the following is satisfiedߝ (ݐ − ߮ఌ(ݔ, |(ݐ ≤ ,ݐଶߝܣ ∋ ݐ ቂ0, బ்ఌ ቃ.  
A similar approximation of order ܱ(ߝଶݐ) can be found for the solution 

of the Boussinesq system in the case when the wave propagation is not 
unidirectional. Moreover, in the case of a non-flat bed with small 
variations of the order of the size of the surface waves, meaning that if ܾ 
measures the amplitude of the variations of the bottom topography, then 
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௕௛బ =  the constant-coefficient KdV equation may be replaced by a ,(ߝ)ܱ
variable-coefficient KdV equation; and similarly for the Boussinesq 
system with the same scaling and approximation properties. 

 

 

 



CHAPTER TWO 

TSUNAMI MODELLING  
 
 
 

Introduction 

Tsunamis are without a doubt among the most infamous and least 
understood natural disasters today. Often referred to in the popular 
literature by the misnomer tidal wave, tsunamis are generated by large 
displacements in the sea level, often via seismic activity. Most tsunamis––
a term from the Japanese for harbour wave––are caused by vertical 
movement along a break in the earth’s crust (Fig. 2.1). Other causes can 
include volcanic collapse and subsidence, as well as landslides. Contrary 
to popular imagination, a tsunami needs to be neither large nor 
destructive––classification is based on the origin of the wave or wave 
period rather than on the size. Though there were more than 15,000 
earthquakes recorded between 1861 and 1948, there were only 124 
tsunamis. Indeed, off the west coast of South America, 1,098 earthquakes 
have led to only 20 recorded tsunamis. As waves of such great scale, 
generated by complex movements of the earth, and with such devastating 
consequences for populations surrounding the world oceans, the accurate 
modelling of tsunamis is of utmost importance. 

One question which has been raised repeatedly is whether the 
behaviour of a tsunami at sea can be described by the Korteweg-de Vries 
equation. We will pursue this question for one of the greatest tsunamis of 
recorded history––generated by a series of earthquakes in southern Chile 
on May 22, 1960––as it propagated from Chile to Hawaii. These 
earthquakes, among them the largest ever recorded, resulted from a rupture 
about 1000 km long and 150 km wide along the fault between the Nazca 
and South American plates, at a focal depth of 33 km. The principal shock 
occurring on May 22 at 19:11 GCT registered at 9.5 on the moment 
magnitude scale, and led to changes in land elevation ranging from 6 m of 
uplift to 2 m of subsidence––which has been modelled to correspond to an 
average dislocation of 20 m along the fault, with peaks of more than 30 m. 
This subsidence extended as far as 29 km inland, resulting in some 10 km2 
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of forest around the Rio Maullrin being submerged by the tides and 
consequently defoliated. 

 

Figure 2.1 Earthquake causing the tsunami 

Not only was the principal earthquake at 39.5.S, 74.5.W especially 
powerful, it generated a tsunami with an average run-up of 12.2 m and a 
maximal run-up on the adjacent Chilean coast of 25 m. Over the course of 
the next day, a number of tsunamis wreaked havoc upon the Pacific, taking 
the lives of more than 2000 people and causing millions of dollars in 
damages. The initial wave travelled between 670 and 740 km/h, with a 
wavelength of between 500-800 km and a height in the open ocean of only 
40 cm. Borrowing an example, sitting in a boat in the Pacific, the tsunami 
wave would take between 45 minutes to an hour to pass one by while 
raising the boat by less than one centimetre per minute––hardly noticeable 
on the open sea. Nevertheless, the tsunami reached amplitudes of 7 m in 
Kamchatka and 10.7 m in Hilo, Hawaii, where it caused widespread 
destruction after travelling 10,000 km in just under 15 hours. The Chilean 
tsunami of 1960 had wavelengths in excess of 500 km and amplitudes of 
less than one metre while propagating over the Pacific Ocean, which, 
though the deepest of the worlds’ oceans, has an average depth of only 4.3 
km. These scales lend themselves to modelling with shallow-water long-
wave theory, i.e. water depth is small compared to wavelength and depth 
is large compared to amplitude. We note also that the depth of open ocean 
across which the 1960 tsunami travelled is relatively uniform, and given 
that the rupture length exceeded the wavelength of the resulting tsunami, it 
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is reasonable to assume the waves as two-dimensional; this is borne out (at 
least between Chile and Hawaii) by consulting travel time charts (Fig. 
2.2).  

The study of the propagation of tsunamis from their small disturbance 
at the sea level to the size they reach approaching the coast has involved 
the works of many scientists. It is clear that in order to predict accurately 
the appearance of a tsunami it is fundamental to build up a good model. 
From this point of view the most important tool in the context of water 
waves is soliton theory. Frequently in the literature it is stated that a 
tsunami is produced by a large enough soliton (Fig. 1.1). Solitons arise as 
special solutions of a widespread class of weakly nonlinear dispersive 
PDEs modelling water waves, such as the KdV or Camassa-Holm 
equation, representing to various degrees of accuracy approximations to 
the governing equations for water waves in the shallow water regime. 

 

Figure 2.2 Chile tsunami 

How is the tsunami initiated? The thrust of a mathematical approach is 
to examine how a wave, once initiated, moves, evolves and eventually 
becomes such a destructive force of nature. We aim to describe how an 
initial disturbance gives rise to a tsunami wave. 
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Mathematical modelling of tsunami waves 

In order to derive the model equation of a tsunami wave we assume an 
initial disturbance of the form of a two-dimensional wave and we are 
interested in understanding the dynamics of the wave as it propagates 
across the ocean. Choose Cartesian coordinates (ܺ, ܻ) with the ܻ-axis 
pointing vertically upwards, the ܺ-axis being the direction of wave 
propagation, and with the origin located on the mean water level ܻ = 0. 
Let ߔ(ܺ, ܻ, ,ܺ)ߖ ,(ܶ ܻ, ܶ) be the velocity field of the two-dimensional 
flow propagating in the ܺ-direction over the flat bed ܻ =  −ℎ, and let ܻ = ,ܺ)ܪ ܶ) be the water's free surface with the mean water level ܻ = 0. 
The equation of mass conservation ߔ௑ ௒ߖ + = 0  

is a consequence of assuming constant density. Under the assumption of 
inviscid flow (which is realistic since experimental evidence confirms that 
the length scales associated with an adjustment of the velocity distribution 
due to laminar viscosity or turbulent mixing are long compared to the 
typical wavelengths) the equation of motion is Euler's equation: 

ቐ ்ߔ + ௑ߔߔ + ௒ߔߖ =  − ଵఘ  ௑்ܲߖ + ௑ߖߔ + ௒ߖߖ  =  − ଵఘ  ௒ܲ − ݃,  
where ܲ is the pressure, ݃ is the constant acceleration of gravity and ߩ is 
the constant density of the water. We also have the boundary conditions ܲ =  ௔ܲ௧௠ on ܻ = ,ܺ)ܪ ܶ), where ௔ܲ௧௠ is the (constant) atmospheric 
pressure at the water's free surface, ߖ = ்ܪ  + ܻ ௑ onܪߔ  = ,ܺ)ܪ ܶ), and ߖ = 0 on ܻ = −ℎ. These conditions express the fact that water particles 
cannot cross the free surface, respectively, the impermeable rigid bed, 
while ܲ =  ௔ܲ௧௠ decouples the motion of the water from that of the air 
above it in the absence of surface tension; for wavelengths larger than a 
few mm (and in our case we deal with hundreds of km) the effects of 
surface tension are known to be negligible. We will consider irrotational 
flows with zero vorticity ߔ௒ − ߖ௑ = 0.  

This hypothesis allows for uniform currents but neglects the effects of 
non-uniform currents in the fluid. 
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Finding exact solutions to the nonlinear governing equations of water 
waves is not possible even with the aid of the most advanced computers. 
In order to derive approximations to the governing equations it is useful to 
write them in non-dimensional form. We assume that the two-dimensional 
waves under investigation have acquired a certain pattern. We assume that 
the wave pattern under investigation represents a weakly irregular 
perturbation of a wave train in the sense that averages over suitable 
times/distances resemble a wave train. Since ℎ is the average depth of the 
water, the non-dimensional ଴ܻ of ܻ should be ܻ = ℎݕ, which is to be 
understood as replacing the dimensional, physical variable ܻ by ℎݕ, where ݕ is now a non-dimensional version of the original ܻ. The non-
dimensional of the horizontal spatial variable is also obvious; if λ is an 
average of the typical wavelength of the wave, we set ܺ =  The .ݔߣ
corresponding non-dimensional time is ܶ =  ఒඥ௚௛t. 

Then the governing equation for irrotational water wave equations in 
non- dimensional form is: 

۔ۖەۖ
ۓ ଶߜ ௫ܷ௫ + ܷ௬௬ = ௬ܷ(ݐ)߁ ݊݅  0 = ݕ ݊݋   0 = ௧ߦ1− + ௫ܷ௫ߦ ߝ  + ఌఋమ ܷ௬ = ݕ ݊݋ 0 = ߦߝ 

௧ܷ + ఌଶ ܷ௫ଶ + ఌଶఋమ ܷ௬ଶ + ߦ  = ݕ ݊݋ 0 =   ,ߦߝ 
where ݔ ↦ ,ݔ)ߦߝ (ݐ)߁ ,ݐ is a parametrization on the free surface at time (ݐ = ,ݔ) } ,(ݕ −1 < ݕ < ,ݔ)ߦߝ   is the fluid domain delimited above {(ݐ
by the free surface and below by the flat bed {ݕ =  −1} , and where ܷ(. , . , :(ݐ ߁ →  is the velocity potential associated to the flow, so that the ࡾ
two-dimensional velocity field is given by (ܷ௫, ܷ௬). 

An interesting phenomenon in water channels is the appearance of 
waves with a length much greater than the depth of the water. Korteweg 
and de Vries started the mathematical theory of this phenomenon and 
derived a model describing the unidirectional propagation of waves of the 
free surface of a shallow layer of water. This is the well-known KdV 
equation: ൜ݑ௧ − ௫ݑݑ6 + ௫௫௫ݑ = 0, ݐ > 0, ݔ ∈ ,0)ݑࡾ (ݔ = ,(ݔ)଴ݑ ݔ ∈ ,ࡾ    
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where ݑ describes the free surface of the water. The beautiful structure 
behind the KdV equation initiated many mathematical investigations. 

Recently, Camassa and Holm proposed a new model for the same 
phenomenon: ൜ݑ௧ ௫௫௧ݑ − + ௫ݑݑ3 = ௫௫ݑ௫ݑ2 + ,௫௫௫ݑݑ ݐ > 0, ݔ ∈ ,0)ݑࡾ (ݔ = ∋ ݔ   ,(ݔ)଴ݑ  ࡾ   

The variable ݔ)ݑ,  in the Camassa-Holm (CH) equation represents (ݐ
the fluid velocity at time ݐ in the ݔ direction in appropriate non-
dimensional units (or, equivalently, the height of the water's free surface 
above a flat bottom). Unlike KdV, which is derived by asymptotic 
expansions in the equation of motion, CH is obtained by using asymptotic 
expansions directly in the Hamiltonian for Euler's equations in the shallow 
water regime. The novelty of Camassa and Holm's work was the physical 
derivation of the CH equation and the discovery that the equation has 
solitary waves (solitons) that retain their individuality under interaction 
and eventually emerge with their original shapes and speeds. 

As an alternative model to KdV, Benjamin, Bona and Mahoney [9, 10, 
and 11] proposed the so-called BBM equation: ݑ௧ ௫ݑ + + ௫ݑݑ − ௫௫௧ݑ = 0, ݐ > 0, ݔ ∈   .ࡾ

Numerical work of Bona, Pritchard and Scott shows that the solitary 
waves of the BBM equation are not solitons. 

As noted by Whitham [118], it is intriguing to find mathematical 
equations including the phenomena of breaking and peaking, as well as 
criteria for the occurrence of each. He observed that solutions of the KdV 
equation do not break as physical water waves do. Whitham suggested 
replacing the KdV model with the nonlocal equation ݑ௧ + ௫ݑݑ + = ࡷ 0, ݐ > 0, ∋ ݔ  ,ࡾ
for which he conjectured that breaking solutions exist. Here ࡷ is a Fourier 
operator with the symbol ݇(ߦ) = ඥ(tanh  Whitham's conjecture was .ߦ/(ߦ
proved in Naumkin and Shishmarev, “Nonlinear Nonlocal Equations in the 
Theory of Waves,” vol. 133, Transl. Math. (Rhode Island: Monographs, 
Providence, 1994). The numerical calculations carried out for the 
Whitham equation do not support any strong claim that soliton interaction 
can be expected. 
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On the other hand, Camassa, Holm and Hyman [19] show that the 
solitary waves have a discontinuity in the first derivative at their peak and 
that soliton interactions occur in the CH equation. The advantage of the 
new equation in comparison with the well-established models KdV, BBM 
and the Whitham equation is clear: the Camassa-Holm equation has 
peaked solitons, breaking waves, and permanent waves. 

Discussion of Tsunami waves dynamics 

Let us conclude this chapter with a brief discussion of the wave 
dynamics as the tsunami propagates towards the coast. The previous 
considerations show that from initiation until nearing the coastal region, a 
good approximation in the non-dimensional variables of tsunami waves is 
provided by the solutions of the corresponding model equation. In the 
original physical variables this means that up until the near-shore the wave 
profile remained unaltered propagating at constant speed ඥ݃ℎ଴. The linear 
model breaks down when the tsunami waves enter the shallower water of 
the coastal regions and for an understanding of the tsunamis close to the 
shore the appropriate equations are those modelling the propagation of 
long water over variable depth. Before the waves reach the breaking state, 
their front steepens and dispersion, no matter how weak, becomes 
relevant. In this region faster wave fronts can catch up slower ones. 

 Let us take for example the tsunami of 2004 in the Indian Ocean [1]. 
For modelling purposes, outside of the Bay of Bengal the two-dimensional 
character of the tsunami waves can no longer be taken for granted since 
diffraction around islands and reflection from steep shores alter this 
feature considerably (see Fig. 2.3).  

The earthquake that generated the tsunami changed the shape of the 
ocean floor by raising it by a few m to the west of the epicentre and 
lowering it to the east (over 100 km in the east-west direction and about 
900 km in the north-south direction). The initial shape of the wave pattern 
that developed into the tsunami wave featured therefore to the west of the 
epicentre a wave of elevation followed by a wave of depression (that is, 
with water levels higher and respectively lower than normal), while to the 
east of the epicentre the initial wave profile consisted of a depression 
followed by an elevation. The fact that as the tsunami waves reached the 
shore in either direction, the shape of the initial disturbance (first a wave 
of elevation, then a wave of depression, respectively vice-versa) was not 
altered is of utmost importance in validating a theory for the wave 
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dynamics on this occasion. This observation suggests that perhaps the 
shape of the tsunami waves remained approximately constant as they 
propagated across the Bay of Bengal. These clearly show a leading wave 
of elevation, followed by a wave of depression, a feature common both to 
the initial wave profile west of the epicentre and to the tsunami as it 
entered the coastal regions of India and Sri Lanka. These measurements 
also confirm another essential feature of tsunami waves: even though these 
waves reach large amplitudes due to the diminishing depth effect as they 
approach the shore (waves as high as 30 m were observed near the city 
Banda Aceh on the west coast of the northern tip of Sumatra about 160 km 
away from the epicentre of the earthquake), tsunami waves are barely 
noticeable at sea due to their small amplitude. Indeed, the satellite data 
show that the maximum amplitude of the waves, whether positive or 
negative with respect to the usual sea level, was less than 0.8 m over 
distances of more than 100 km. 

Quantifying the dynamics of tsunami waves as they impact on coastal 
areas is a challenging mathematical and physical problem of the utmost 
importance. It is in this regime that dispersion (that was insignificant 
during the tsunami propagation at sea) starts to play an important role: 
before the waves reach the breaking state, their front steepens and 
dispersion, no matter how weak, becomes relevant [37]. In this region 
faster wave fronts can catch up slower ones (but they can never overtake 
them) as a manifestation of the “confluence of shocks” (see [118]) and can 
result in large amplitude wave fronts building up behind smaller ones [37]. 



Figure 2.3 Tssunami in the In

Tsunami M

ndian Ocean 200

Modelling 

04

19 

 



CHAPTER THREE 

TRAVELLING WAVE SOLUTIONS 
 OF SHALLOW WATER MODELS  

 
 
 

Introduction 

This Chapter deals with travelling wave solutions of shallow water 
waves. Camassa-Holm considered (see [18], [19]) a third order nonlinear 
PDE of two variables modelling the propagation of unidirectional 
irrotational shallow water waves over a flat bed, as well as water waves 
moving over an underlying shear flow. It is well known that the motion of 
inviscid fluid with a constant density is described by Euler's equations (a 
system of nonlinear PDE). In the special case of the motion of shallow 
water over a flat bottom the corresponding system was simplified by 
Green and Naghdi and related to an appropriate two-component first-order 
Camassa-Holm system. Another interesting system of nonlinear PDE is 
the viscoelastic generalization of Burger's equation. In the above-
mentioned systems we are looking for travelling wave solutions and we 
are studying their profiles. To do this we use several results from the 
classical Analysis of ODE that enable us to give the geometrical picture 
and in several cases to express the solutions by the inverse of Legendre's 
elliptic functions. We are not going to discuss the physical explanation and 
interpretation and we shall concentrate only on the mathematical part of 
the investigations (see [83]). 

As we know, one of the properties of the dispersive nonlinear 
evolution equations is that usually they possess steadily translating waves–
–the so-called travelling waves. By depending on specific boundary 
conditions on the wave's shape, for instance, in the case of water waves, 
these special states of motion can give rise to either solitary or periodic 
waves. Moreover, various nonlinear dispersive model equations are in 
sharp approximation to the governing equations for water waves. From 
these considerations, the problems about the stability of travelling waves 
and their existence as exact solutions of the dynamical equations are very 
important. The situation regarding periodic travelling waves is rather 



Travelling Wave Solutions of Shallow Water Models 21 

delicate. The stability and the existence of explicit formulas of these 
progressive wave trains have received little attention. A first study of these 
wave fronts is due to Benjamin in [10] with regard to the periodic steady 
solutions called cnoidal waves which were found initially by Korteweg 
and de Vries. 

Travelling waves for Camassa-Holm type equations 

It is classical that the soliton is a special solitary travelling wave that 
after a collision with another solution eventually emerges unscathed 
([118], [10]). Solitons appear in the propagation of water waves or waves 
along a mass-spring chain. Travelling wave solutions of different classes 
of PDE are studied in many papers. We shall mention several of them only 
as they are closely connected with the content of this chapter: [18], [19], 
[36], [123], [84], and [94]. 

Camassa-Holm (see [18]) derived a shallow water equation ݑ௧ + ௫ݑ2݇ − ௫௫௧ݑ + ௫ݑݑ3 = ௫௫ݑ௫ݑ2 +  ௫௫௫     (3.1)ݑݑ

and proved that it possesses a peaked solitary wave solution for ݇ = 0. 
Degasperis and Procesi (see [46], [61]) proposed the following variant of 
(3.1): ݉௧ + ௫݉ݑ + ௫݉ݑܾ = ܿ଴ݑ௫ −  ௫௫௫,       (3.2)ݑߛ

where ݉ = ݑ − ,ܾ ௫௫ andݑଶߙ ܿ଴, ,ߛ ߛ ,are constants ߙ ≠ ߙ ,0 ≠ 0. 

Thus, (3.2) can be written as ݑ௧ − ܿ଴ݑ௫ + (ܾ + ௫ݑݑ(1 − ௫௫௧ݑ)ଶߙ + ௫௫௫ݑݑ + (௫௫ݑ௫ݑܾ + = ௫௫௫ݑߛ  0.        (3.3)  

The travelling wave solution of (3.3) is:  ݔ)ݑ, (ݐ = ݔ)ߔ  − (ݐܿ = ,(ߦ)ߔ  ܿ = .ݐݏ݊݋ܿ , ߦ = ݔ −   .ݐܿ
Substituting ݑ in (3.3) we get: −(ܿ + ܿ଴)ߔᇱ + (ܾ + ᇱߔߔ(1 − ᇱᇱᇱߔߔ)ଶߙ + ᇱᇱߔᇱߔܾ + = ᇱᇱᇱߔ(ߛ+ଶܿߙ) 0.        (3.4) 
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Remark 3.1. 

Another possible generalization of (3.3) can be obtained by adding ݑ௥ݑ௫ = ,ᇱߔ௥ߔ ∋ ݎ ݎ ,ࡺ ≥ 2 to the right-hand side of (3.3). Then ߔ௥ߔᇱ = ଵ௥ାଵ  ௗௗ క ᇱᇱߔᇱߔ;௥ାଵߔ  =  ଵଶ ௗௗక ᇱᇱᇱߔߔ,ଶ(ᇱߔ)  = ௗௗక (ᇱᇱᇱߔߔ) − ଵଶ ௗௗక  .ଶ(ᇱߔ)

Integrating (3.4) with respect to ξ we have: −(ܿ + ܿ଴)ߔ + ଵଶ (ܾ + ଶߔ(1 − ߔଶߙ) − ᇱᇱߔ(ߛ-ଶܿߙ − ఈమଶ (ܾ ଶ(ᇱߔ)(1− + ݃ = 0,            (3.5) ݃ = Eventually, (3.5) contains the term ଵ௥ାଵ .ݐݏ݊݋ܿ  . ௥ାଵߔ
Our next step is to make in (3.5) the change ߔకᇱ = (ߔ)݌ కకᇱᇱߔ ֜ = ଵଶ ௗௗః ଶ݌ Put .(ଶ݌) = ݍ ≥ 0. Then (3.5) takes the form 

−(ܿ + ܿ଴)ߔ + 12 (ܾ + ଶߔ(1 − 12 ߔଶߙ) − ଶܿߙ − (ߛ ߔ݀ݍ݀ − ଶ2ߙ (ܾ − +ݍ(1 ݃ = 0. 
In a more general form (ߙଶߔ − ଶܿߙ − (ߛ ߔ݀ݍ݀ + ܾ)ଶߙ − ݍ(1 + 2(ܿ + ܿ଴)ߔ − (ܾ + ௥ାଵߔߝ+  ଶߔ(1 − 2݃ = 0,          (3.6) 

where ߝଶ =  ଶమ(௥ାଵ)మ or ߝ = 0. 

We shall concentrate on the case ߙଶߔ − ଶܿߙ − ߛ  ≠ 0, i.e. either 
Φ<  ఈమ௖ାఊఈమ  or Φ> ఈమ௖ାఊఈమ  . 

The change of an independent variable Φ in (3.6): ߟ = ߔଶߙ  − ଶܿߙ leads to: ηௗ௤ௗఎ ߛ − + (ܾ − ݍ(1 + ଶ(௖ା௖బ)ఈర ߟ)  + ଶܿߙ + (ߛ − (ܾ + 1) ൫ఎାఈమ௖ାఊ൯మఈల + 
ߝ ൫ఎାఈమ௖ାఊ൯ೝశభఈమ(ೝశమ)  - ଶ௚ఈమ = 0          (3.7) 


