
A Comparison of Effort
Estimation Techniques
on Software Projects

A Comparison of Effort
Estimation Techniques
on Software Projects:

How Long Will Your Project Take?

By

Karl Cox

A Comparison of Effort Estimation Techniques on Software Projects:
How Long Will Your Project Take?

By Karl Cox

This book first published 2023

Cambridge Scholars Publishing

Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Copyright © 2023 by Karl Cox

All rights for this book reserved. No part of this book may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without the
prior permission of the copyright owner.

ISBN (10): 1-5275-0206-6
ISBN (13): 978-1-5275-0206-2

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION .. 1
Why write a book on software project effort estimation for computing
students? ... 3
Productivity .. 6
A note on quality in relation to productivity .. 14
Person-day effort .. 15
COCOMO .. 17
What this book covers .. 18
Limitations of this book ... 22
Case study .. 23
Who is this book for? ... 24
Thank you to .. 24

CHAPTER 2 FUNCTION POINTS ... 25

Function point analysis Mark II ... 26
An example .. 29
Technical complexity adjustment factors ... 31
Calculating Mark II adjusted function points 38
Expanding our example .. 43
Exercises .. 45
A future for function points? .. 46

CHAPTER 3 USE CASE POINTS .. 50

Side bar: problem frames estimation? .. 52
How good is use case points estimation? ... 53
Counting use case points .. 54
Working out duration—examples of different approaches 60
An example of use case points calculation ... 64
GameTradeOnline (GTO) remaining use case descriptions 69
Exercises .. 73
Are there any issues with use case points estimation? 74

Table of Contents

vi

CHAPTER 4 STORY POINTS .. 76
Ratios matter, not the points ... 78
50 per cent or 90 per cent accurate? ... 78
What about other factors that impact on product development? 80
“Planning poker” aka Delphi estimation .. 82
The planning poker Delphi process .. 85
Documented Fizzit user stories .. 87
Example story points for user stories 1 and 2 91
Some heuristics for story point counting .. 93
Exercises .. 96
Are there any concerns with story points? ... 96
Velocity and story points.. 97

CHAPTER 5 EARNED VALUE ANALYSIS 102

Performance indicators ... 107
Using what we know to predict the project’s future 108
Estimate At Completion (EAC) ... 109
Working out the original Budget At Completion 109
Alternative EAC calculation .. 110
Estimate To Complete .. 112
Variance At Completion .. 112
There is more to EVA beyond our needs ... 113
Where do the values come from? ... 113
Exercises .. 117

CHAPTER 6 KANBAN ESTIMATION .. 118

Work-in-progress (WIP) limits calculation .. 124
An example of WIP limits .. 126
WIP limit exercises .. 128
Estimating duration .. 128
Duration exercises .. 130
Calculating team size ... 130
Simple team size exercises ... 132
Complex team sizing calculation ... 132
Complex team sizing exercises .. 135
Are there issues with Kanban? ... 137

A Comparison of Effort Estimation Techniques on Software Projects:
How Long Will Your Project Take?

vii

CHAPTER 7 WHERE DOES ESTIMATION GO FROM HERE? 138
The future of counting points? ... 141
COSMIC function points analysis for agile projects? 142
COSMIC Function Points count for Requirement 1 of the Fizzit
case ... 146
IFPUG’s simple function points analysis ... 151
Simple Function Point count example for R1 of Fizzit case 153
In conclusion .. 157
A few words about object-oriented estimation 160
Quality metrics ... 161
Finally .. 162

APPENDIX .. 164

Chapter 2. Function Points ... 164
Chapter 3. Use Case Points .. 170
Chapter 4. Story Points .. 174
Chapter 5. Earned Value Analysis ... 178
Chapter 6. Kanban Estimation ... 180

INDEX .. 186

CHAPTER 1

INTRODUCTION

The first time I heard about effort estimation for software projects was in
1997. I was studying for a master’s degree in software engineering and was
told by a very experienced project manager who had had a full career of
managing large scale projects, that the best way to get ‘close’ to the reality
of the final project effort was to:

1. Estimate the size of the project – typically with function points
2. Double the answer
3. Add 25%

Then you would be as close as you’d ever get. In other words, for big

projects estimation techniques were of little value because the large projects
only got larger, longer and much more expensive.

This did not fill me with confidence in what appeared to be such an
important part of a project: how “big” is the product so that we can work
out how long it is going to take? If the techniques to estimate project size,
duration and cost are so inaccurate1, why is there so much emphasis on
estimation in the first place? I got curious and decided to read up on the
subject.

Perhaps the founding father of software effort estimation is Professor
Barry Boehm. He wrote the great tome on the topic called Software
Engineering Economics, first published in 1981. Barry created the
Constructive Cost Modelling estimation approach—COCOMO—that
changed how industry looked at effort and cost estimation. The principles
Barry defined for approaching effort estimation have been used pretty much
everywhere in software engineering.

1 One of my colleagues tells me when he was a software developer whatever the
estimate calculated, he would multiply it by pi (3.14) in the hope of getting closer to
the inevitably much larger actual.

Chapter 1

2

I liked Barry’s book and COCOMO, but I found it really hard to get my
head round those cost drivers. Nonetheless, I got the concept of why
estimation matters. I also read a brilliant book on software measurement by
Professor Martin Shepperd2, who at the time, was head of computer science
research at Bournemouth University where I was studying. It’s by far the
best book I have read on the topic of software measurement and made a lot
of sense to me. I soon found myself a member of Martin’s empirical
software engineering research group working on my PhD.

When I’d finished my PhD and got itchy feet, I ended up in Australia at
the University of New South Wales working under Professor Ross Jeffery,
also renowned for software measurement research. I’d jumped from one
empirical software engineering research group into another. But hard
numbers, formulae, equations, and piles of data points were not really my
cup of tea—I got it but not the enthusiasm. I was more interested in the
requirements end of the software lifecycle, which by its nature is much more
qualitative than quantitative. I then worked in an empirical research group
at an R&D company called NICTA whose strategy was to boost the
Australian IT sector through the creation of useful software and systems
applications. I found project managers in Australian government agencies
still concerned with estimation of deadlines and costs, often because their
projects were overrunning in both aspects. Why? Their projects were too
large.

Interestingly, a lot of practical application has been achieved with
estimation techniques because project managers do want solutions to this
perennial problem. All the approaches discussed in this book are being used
or have been used in industry. We will get on to the success or otherwise of
estimation approaches a little later as we discuss each one. Further, the more
I engage in teaching project management, I cannot avoid looking into
estimation because it is so important to successful projects. Having worked
on and managed real software development projects, I have found that any
software development is ultimately dependent upon getting enough work
done to satisfy the customer to the quality and scope they expect, to the
agreed budget and more on schedule than less.

The beginning of each project is shrouded in mysteries: what is the
deadline and is it realistic, what are the key requirements and are these
volatile, how experienced is the project team and is it necessary to hire in

2 Martin Shepperd (1995), Foundations of Software Measurement, Prentice Hall,
ISBN: 0-13-336199-3.

Introduction 3

contractors, what work is outsourced, what business processes are changed
by this system and how, and is there enough budget to deliver a working
application with the needed functionality at the right level of quality by the
agreed deadline?

If you are a student reading this book, to answer the question in the book
co-title: how long will your project take? It will take until the submission
deadline. So that’s it, then. End of book, thank you for reading… But is this
everything you need to know as a computing student on this topic? Not
really. I would like to run though several topics on estimation and examine
some of the approaches to estimation that are past or at least ought to be by
now, such as traditional function point analysis, to current ones such as
calculating work-in-progress limits across a Kanban board, to understanding
the current “financial” state of your project through earned value analysis.

Other aspects of project management are not addressed. You won’t find
huge discussion on different project management lifecycle methods—
except where needed. I compared traditional development against agile in a
book on managing your individual computing project3 so I won’t address
this here. You won’t find Gantt charts or any detail on Kanban boards. I
wrote elsewhere about how computing students can apply three basic
project management tools in their assignments in combination with business
and requirements analysis tools.4 The book you are reading now is only
about estimation.

Why write a book on software project effort estimation
for computing students?

Why do you need to consider estimation when you’re doing a student
project or assignment? Surely the submission deadline will tell you when
you have to finish? Yes, that is one thing you don’t need to estimate. But if
you’re working on a complicated group assignment, you will have to think
about when tasks need to get done by so that everything can be completed
on time. You’ll also need to consider what the most efficient approach to

3 Karl Cox (2017), Managing your individual computing project – An agile
approach for students and supervisors 2nd ed, Create Space Publishing, ISBN: 978-
1542778114.
4 Karl Cox (2022), Business Analysis, Requirements, and Project Management: A
Guide for Computing Students, Auerbach Publications – CRC Press, ISBN: 978-
1032109756

Chapter 1

4

the project to take will be. You’ll need to consider how much time you need
to allocate to certain tasks because this will tell you how much more time
you can give to other tasks, such as writing up your project documentation
report.

Please don’t misunderstand me, I am not proposing you apply super-
complex and highly advanced algorithmic approaches to estimation
because, quite frankly, they are hopelessly inaccurate. The more complex
the approach to estimating with the more parameters in play and variables
to consider, the more likely your estimate will be miles out. Also, the more
time you spend estimating, the more likely your estimates are going to be
more wrong. You’re trying to measure something yet to exist—just which
part of this non-existent product are you measuring? This brings to mind a
graph known as the “cone of uncertainty”.

In figure 1-1 you can see this “cone” describing phases of a development
project on the x-axis, and schedule over- and underestimates on the y-axis.
The two curves on the project are furthest away from the x-axis at the
beginning of the project. It is only when the project is complete that the two
curves merge on the x-axis. The y-axis describes how far over or below the
actual duration of the project you will be in your estimates. At the beginning
of the project, you could be as much as two thirds overestimating the project
(1.6x) or two thirds underestimating it (0.6x). In other words, it is highly
unlikely you will have a within ballpark estimate (say within 20 per cent)
until you have completed the specification.

I personally think even then that within 20 per cent will not be obtainable
until you are much further into the design. It is only at the point where you
have finished the project and handed over the software that you can be sure
your estimate of project schedule is accurate. There is no point attempting
to estimate the effort needed to complete a project at the very beginning of
the project. Nowhere near enough is known about it at that point. You need
to wait until further in.

Although the idea of the cone was written about over 40 years ago, not
much has really changed in the world of estimating in terms of getting the
schedule estimated perfectly from the start. If you’re lucky you get a “ball-
park figure” to begin with and hope this is close enough. As you progress
through a project, that estimate should become more accurate as you learn
more about the product and your project’s parameters (environment and
team). You will realise you are either over-estimating or under-estimating
as per the curves on the graph in the figure.

Introduction 5

Figure 1-1. Cone of uncertainty. This was originally described by Barry Boehm as
the “funnel curve” in his 1981 classic, Software Engineering Economics.

You might ask if all you are likely to get is an experience similar to that
depicted in figure 1-1, then why should you bother estimating at all? It’s
true that your project—if you are a student—will have a hard deadline so
maybe you don’t need to bother? You might ask yourself if you are going
to end up working in the industry and would that not mean working on
projects? Those projects will have deadlines. The project manager on those
projects—which could be you!—will have to estimate how the work needs
to progress in order to meet the deadline. The deadline is often decided prior
to the project kicking off. This often means that not a great deal is really
known about client needs so the deadline is little more than a speculative
guess, based upon some memory of projects being like this before. On any
project, how do you know how long to take on writing a design document
before you need to get to code? How long on average should you spend on
programming on a project? According to Boehm, it is around 13 per cent!
I’ve seen estimates of around 10-15 per cent from other sources. It’s hard to
believe, isn’t it? Is your goal to deliver a software product where a minor

Chapter 1

6

task—in terms of effort—is the programming of the product? No, it does not
make a lot of sense to me either. Certainly, my own experiences indicate this
is a big underestimate. What is the rest of the project effort spent on? Well, a
lot is put on getting the product’s specification spot on. The idea of getting the
whole blueprint correct before you build the product is very much a
“traditional” view. In agile development, the blueprint should only come into
play upon the particular user/technical story or requirement being
programmed. Either way, analysis work is done to get a better understanding
of the use of the function(s) in the context of those using it. Design work can
take a lot of time, ensuring the database structure is done correctly and getting
the business logic between the front end and back end correct. UML design
has been around for 25 years and more, and it is pretty stable as the way to
design your system on its inside. There’s a lot of interface design work to do
also and user experience design is really important to get spot on. Post
programming, there is testing, too. We will exclude maintenance from our
estimates because maintenance could go on for years, subject to contractual
agreement between supplier and client. Looking back over the long list of
things that may need to be done on the project, perhaps it is no wonder that
programming is such a small chunk of the workload.

Productivity

A team’s productivity rating is key to better development. Productivity
means how efficiently you make or programme the product calculated as a
daily, monthly or whole project rate. You may even base productivity on an
individual developer rate. In other words, productivity means how fast can
you get the work done? All the effort estimation in the world means very
little without factoring in productivity. As an example, you might have to
programme 20 screens for an ecommerce retail shopping web application.
Historically on average, your project team can develop 0.75 screens per day.
“Develop” means as a vertical slice: understand the requirements, do the
design needed (screen, code, database, privacy, security, networks),
programme the designs into a working screen and test the requirements
against it. So, if there are twenty screens and a productivity rating of 0.75,

Project duration = number of screens / productivity rate
Duration = 20 / 0.75 = 26.67, which we will round up to 27 days.

Introduction 7

Our main concern is to get the most efficient and effective working
environment for your team. Being too productive—meaning here coding
too quickly—can lead to a loss of interest in good quality assurance. When
this happens, you have a big problem because the software product will have
a lot of bugs and errors. Requirements will be misinterpreted. Even if those
misinterpreted functions work on the programmed application, the product
will fail to be useful to the customer and end users because it does not do
what the client wants it to do. Or the product will not work properly. High
productivity may mean reduced client satisfaction because of a higher bug
rate. Is this really being productive? What if your productivity was two
screens per day? In our little example,

Duration = 20 / 2 = 10 days.

Great! You built the application in less than half the time of the first
estimate! But, as a consequence, what if you released a third more bugs?
What is the cost of fixing those bugs? This is both a question of extra
scheduled effort to bug fix and—perhaps more importantly—one of loss of
reputation. Or confirmation of a bad reputation; customers know you work
fast but they know you make more mistakes. This ultimately costs them
more than if you took a more measured approach.

The opposite end of the spectrum is one that imposes too much quality
control. This carries the risk wherein the delivery date will be pushed back
unnecessarily, resulting in increased customer costs and extra costs for the
development team. For the team, the extra costs may be offset costs or
opportunity costs. Offset costs may be those of the allocated budget for the
next project being dipped into so as to complete the current project. You are
offsetting the next project against this current one, or at least prioritising it
by your actions. Opportunity costs incur when unnecessary time is wasted
which could have been put to much better use.5

5 An example of opportunity cost: I knew a PhD student who had just completed her
thesis and needed to get it printed. She was concerned that the price of printing locally
was too high. So, she spent an entire week going from printer shop to printer shop
across Sydney comparing prices. She triumphantly announced a week later that she
had found a slightly cheaper printer resulting in saving $100 overall on the print. Fine,
you might say, well done to her. Yet it was a case of penny-wise, pound-foolish. She
spent around $50 travelling from printers to printers on bus and train tickets, and a
similar amount on food, and she wasted an entire week doing so. The opportunity to
have done something far more productive during that week was the cost of getting her

Chapter 1

8

In the situation of too much quality assurance, there may grow a
perfectionist’s culture where the developers won’t push for customer
acceptance sign off because the developers always see ways to continually
improve the product. This means a never-ending cycle of enhancement,
testing, refusal to release the software, another round of enhancements
needed—in the eyes of the developers only—and so on. The customer is
now frustrated. If the development team asked the client to approve the
product for release, the team might push back against the client’s wishes of
getting the product into proper usage right now. Ultimately, the team grow
to believe the product is theirs because they created it.6

Failure to release adequate software can arise from a culture of fear. The
development team never really believe their product is good enough.
Without endless rounds of testing, revisions and refactoring, this fear will
override any rational consideration or deliberation on project progress and
the needs of the customer. The developers are worried the product will be
rejected by the customer, so they never finish tinkering with it.

High productivity is important but there can be over-emphasis on it. I think
you are better off being efficient and if this is close to “high productivity” then
this is good enough. If your efficient best is still regarded as slow, then this
slow productivity rate can be used as a weapon to undermine the confidence
of the development team. If your team’s productivity is noticeably slower

thesis printed at her local printers for $100 more. Of course, she didn’t look at it the
way I did.
6 This might strike you as ridiculous, but I witnessed this for real on a project I
worked on in Sydney. A government agency project had overrun by five years and
was over budget by $60 million—it was originally contracted to be a one-year, three-
million-dollar project. I was hired late into the project to look at opportunities to
speed up end delivery but found a very big mess. I talked to a lot of staff on the
project and found two people sitting forlorn in a corner of the office floor this large
project was occupying. They had more or less sneered at me every time I walked
past them so I decided to ask what their problem was. These two people turned out
to be the customer representatives—and they had been banned from talking about
their project with the development team and the project’s management when they
refused to pay $1 million for a function not specified or agreed to and entirely
unwanted! How do you ban a customer from discussing their project?! How daft is
that? The developers had taken over the project to the point where the customer was
shut out. This happens surprisingly often especially when large systems integration
(SI) companies get involved because the SI tries to take over the business of the
project and not just build the product. My recommendation to speed up the Sydney
project was to shut it down since nothing had been delivered and the requirements
had grown from an initial 3,000 to 12,000. It was never going to succeed.

Introduction 9

than other teams in your organisation, then management may want to find
out why. The added pressure does not help. If your team is superfast, this
may well be offset by the higher number of bugs you typically release.
Being a tall poppy can quickly lead you to feeling like a sore thumb.
Conversely, if your productivity is lower than other teams, why is this?

Perhaps your team is very inexperienced compared to others. You have
a team composed of a high number of recent graduates, for instance.
Naturally, because of lesser experience, your productivity rate is lower. But
this should change over the course of a year once your team gain that
experience. So, let’s assume your productivity now is 0.5 screens per day.

Duration is 20 / 0.5 = 40 days.

This seems very slow compared to the superfast ten days duration or even
the 27 days. Given you are inexperienced, does it mean there is also a risk
of more bugs than average being released? This is possible. But it is hoped
that the extra time taken ensures a better-quality product.

A simple way to address slow productivity is to include a good mix of
experience in the project team. Staff who have 5- to 10-years’ experience
mixed with recent graduate intake can balance the productivity issues that
might occur. Inexperienced staff will learn from the experienced and
ultimately, their own productivity rates will increase.

You may find productivity is particularly slow on one project even with
experienced developers. This could be because of a new client; staff are still
feeling their way in how they work best with the client. Perhaps the client’s
business domain is slightly different to your previous experiences, and you
need to learn their business on top of building their system for them? This
may mean you need to develop business concept models and/or business
process models to understand their business better before the normal
development work can begin in earnest. This added work—vital in building
a product that really does meet the needs of the client—is only done at the
start with a new client. Since further projects are mostly enhancements to
that original product or product line, extending and/or re-analysing the
existing business concept models and business process models7 takes much
less time than starting from scratch.

7 For an introduction to these business models, see: Karl Cox (2022), Business
Analysis, Requirements, and Project Management: A Guide for Computing Students,
Auerbach Publications – CRC Press, ISBN: 978-1032109756.

Chapter 1

10

Your project environment may have changed and this can reduce
productivity. Simple things like relocation of your office to a different floor
or building can impact productivity hugely, even if the physical relocation
happened before the project commenced. Impacts can be having to walk
further to use the facilities, to being unable to warm up your lunch in the
new building, to feeling too cold or too hot all the time because the ambient
temperatures are not set to optimal yet. You’re either shivering or snoozing!
Perhaps you’re using a new compiler or new application development suite
meaning you need to get used to the new tools. This slows down productivity.

You may have a new project manager who you are not yet used to
working with. Perhaps this new manager is more rigorous in collecting
project data, meaning you have to produce higher quality and more accurate
progress reports, taking time out from development work. Your business
may have shifted direction slightly meaning the products you provide for
them and/or external clients are different enough for your project to be
slowed down whilst you get to grips with a potentially new product line.

Tactics for improving productivity range from going on a team building
weekend to forcing your team to work longer hours, even the weekends!
Neither are particularly brilliant, so I recommend you apply the following
to your team to improve productivity.

Acceptance (which does not mean agreement). Accept that other people
produce different quality work to you and do it in a different way. Provided
the quality is good enough for your client and meets the standard set by the
team, then this is fine. You do not have to agree with how work is done or
that you could have done it better, but you should accept it. What you can’t
change, accept it! Life will become much easier for you if you do this. If
you complain long enough about a colleague’s work, you will end up having
to do that work. Will you do a better job?

Communication. Ensure your team has an agreed way to keep in touch.
You may find you become distributed if you have to work at home. How do
you keep in touch? Having a communications plan helps provided it is
followed and it is meaningful. As you should be in the same office,
communication is easier but having regular, short meetings helps such as
daily stand ups.

Understanding. Please don’t misunderstand me! It isn’t easy for me to
look at someone doing something really badly—from my point of view—
and not to jump in! But when I realise we are different, all of us, then I allow

Introduction 11

for some understanding of a different person’s perspective on work. We get
along better that way and our team is more successful.

Encouragement. Be positive! Not the fake happy-clappy “everything is
super” approach, with whooping, cheering and back slapping. But you can
say: “Well done, that work is spot on.” Or “Good job.” The impact on your
colleagues is enormous when we all encourage each other sensibly. Keep
the back slapping to the pub after work.

Unity. Work together as one unit. In Japan, IT teams tend to work as
slowly as their slowest person so as not to isolate them or make them feel
useless. This is Kanban work-in-progress limits in action as you will see
later in the book. New graduates are treated like this to encourage them to
work with the team. In unity is strength! I have seen this work well when
working with companies in Japan. Soon the graduate speeds up and all is
well.

Forgiveness. When something goes wrong, forgive the person who got
it wrong and if it was you who made the mistake, forgive yourself first. Then
think of how to learn from this mistake and to ensure it doesn’t re-occur. If
it does recur, then forgive the person/yourself and get on with learning from
the mistake again. This is how we improve and become better at our work
and as people. The worst thing you can do is point fingers and blame people,
gossiping in the background. This generates a poisonous energy that affects
everyone involved. It is very hard to eradicate once it is there. Treat others
as you would have them treat you – the Golden Rule!

Sometimes staff are told to work weekends in order to get a product out
the door because it is already past its deadline or very soon will be. This
book is primarily targeted at students so this may not concern you because
your deadlines are fixed and immoveable. When and where you work to
meet the deadlines is entirely down to you. Even group work assessments
are mostly done outside of class time. In an office environment, however, it
isn’t so easy to sacrifice your weekend for your employer. You may well
have a family at home who have plans for the weekend that include you
turning up. Employers expect you to manage your family life in your own
way. If work life has to impinge on family life, employers tend not to really
care too much about the impact. It’s just business, they may say. Thankfully,
there are more enlightened employers out there who do realise that family
time and time away from the office is essential to employees. The more
worn out you are from working overtime, the less productive you will be
during normal office hours. One of the precepts of Agile is to give staff their

Chapter 1

12

weekend lives and to limit overtime to one day per sprint per developer.
Some companies understand that many of their staff are young and have no
ties, so they do allow these staff to work extra hours. But they need to be
careful not to allow it too much. Burnout has been a very big problem in
this industry and it still is. When you burnout, you are useless to your
employer, you resent being at work and pretty soon quit, moving on to
another job in the hope your new environment will refresh your energies
once again. Companies with a high staff turnover rate get noticed. No one
wants to work there because no one survives more than six months!

Consequently, clients notice that the quality of their products begins to
fall as the development company staff begin to lose enthusiasm. This can
lead to contractual problems where projects slip behind schedule as the
productivity-quality relationship stumbles. The ultimate weapon a client has
is to move their business elsewhere.

If you notice that your productivity rating is fluctuating wildly in the
same team from project to project, then something in the nature of your
projects needs investigating. Perhaps a cause is that for different clients, you
need to use different development environments. Perhaps even different
programming languages. You might now be a C# house but historically you
were Java, and some of your older clients still have Java applications that
need maintenance. Your project team is now very experienced with C# but
you only have one very experienced Java programmer on your team (who
is also a C# developer). This means when you need to work on a project for
a Java client, only one team member can get the bulk of that work done. The
productivity of other projects is reduced as a consequence. The client has to
rely on the experienced Java programmer to get the project finished and
there is almost no one else who can assist in the code work because they
don’t understand Java’s syntax well enough. Perhaps this client can be
convinced to convert to a C# application rather than Java? Perhaps the client
is entirely unaware their product is a Java product anyway? It would be
worth discussing this with the client. Could your team deliver a fully
working C# version of the Java product over time? Could your client switch
immediately to the C# version that’s offered to your other clients? Is your
client willing to transition its data and business functions just to support a
C# environment rather than Java?

Perhaps each project you take on is a bespoke development. This means
each project is unique and significantly different to any other project.
Subject to how complex or different the project, this can result is highly

Introduction 13

fluctuating productivity rates. Taking an average rating doesn’t really help
in this case. You might instead be wiser streamlining your business. For
example,

 We only develop C# applications.
 We are only a Windows OS product developer.
 We only build web applications.
 We only build B2B products8.
 We only work in the retail banking sector.

In all honesty, the above is what companies already do anyway. That

lone Java developer may wish to move elsewhere or may in fact also be a
very competent C# developer. You would be wise to hold on to their
experience and business knowledge, finding something the developer would
like to do.

For students working on a group assignment, pushing for higher
productivity can lead to frustration. It can lead to one person not trusting
their team, even from day 1, because of a prior negative experience, and
taking on the bulk of the work him or herself. This can lead to all kinds of
problems. The rest of the team may build a resentment against the one
person, may refuse to cooperate, may break away from that person and set
up a second group which includes everyone minus that one person. None of
which will be communicated to the tutor (I have experienced this many
times!). Sometimes one or two students don’t do any work and it is hard to
accept or forgive this. But there may be genuine reasons why a group
member isn’t getting in touch or attending meetings. Rather than throw that
person out of the group, it would be wiser to talk with staff to look at how
that person can re-engage with the group, if possible, and sooner rather than
later.

To manage groupwork productivity in a university setting, look at the
consistency of the work distributed among the team. Who is doing the most
work? Who appears to be doing nothing or very little? When a task is
delegated, ensure someone works as a “buddy” or assistant on that specific
item of work. This means if the work is beyond the capability of the first-

8 B2B = business-to-business such as supplying control software for washing
machine manufacturers; B2C = business-to-consumer, such as making a retail web
application for the public to purchase our stock of clothing.

Chapter 1

14

choice developer, the buddy can help out before the schedule slips. How
much effort will each item of work take? Is coding a database more effort
than designing a highly usable responsive screen? Is writing a requirements
document less effort than programming a security control monitoring access
rights to a dataset? Is managing a project considered productive? It is really
important to realise that a genuine contribution is sometimes viewed as
apparently insignificant work compared to other work. Programmers may
feel they are doing the bulk of the work and those doing the analysis,
documentation and management are only bit-part players. The fact is that
the team succeeds or fails as a team, not because of one person. A successful
team is where everyone contributes something of value. Writing a
requirements document is a valuable input into the project. Conducting
testing is a valuable contribution. Writing a report for the project—if
required—is very valuable. Managing the project’s progress is a vital
activity for a successful outcome. Your success is judged at the group level
not the individual.

A note on quality in relation to productivity

Software quality, ultimately, is the be-all end-all. In other words, if you have
no- or low-quality software, your product isn’t going to work. If it isn’t
going to work, it isn’t going to be used. You can, therefore, be the fastest
producer of software in the world, but if the quality of your product sucks,
then you won’t be in business for very long. No one will use your product
because it is rubbish. When you go shopping online at say
Amazon.your_nation, you can find a range of differently priced products.
Some are expensive, you think, so you look for a better deal, so called cheap
and cheerful. Read some of the reviews of these lesser-priced products and
you’ll be thinking “cheap and tearful” instead! This is because the
overriding problem the cheaper products have is their lack of quality. They
are too flimsy, or they arrive damaged, or are the wrong size and colour,
have missing parts or the wrong parts, or are not compatible with your
system as claimed in their advertisement. Or they break within minutes,
days or weeks of usage despite claims to their robustness. The reviews make
it clear: Don’t waste your money! So, you don’t and you spend more as a
consequence, or you do and take a risk. It’s the same with software quality.
If it is poor you soon find you are looking for an alternative solution but by
then it is too late, you are contractually in a wrangle with the development

Introduction 15

team, and you can’t find a review on Amazon before your software is
completed to warn you it will suck.

Poor quality can be defined in terms of bad interface design (the screen
layout is counter-intuitive and you have to re-click buttons or links several
times to get anything to happen), continual system error messages pop up
(because the system files are not as compatible with your operating system
as expected and that much needed driver file cannot be found), unexpected
outputs from inputs (e.g. you work in a customer accounts department, input
a customer invoice number that retrieves the customer’s credit card details
but not their order) or the function you needed isn’t implemented as you
expected (meaning your procedures have to change unnecessarily to meet
the functioning of the software) and so on. Your productivity can be really
high but if you deliver a low level of quality, then there’s a problem.
Conversely, slower productivity is no guarantee of high—or even good—
quality because speed does not have a relationship inversely proportional to
quality. However, a slower productivity rate can imply better quality
because the assumption that more time on testing and even on understanding
customer need has been taken. These are assumptions and may not come to
fruition unless the manager in charge of the department imposes greater
controls on the software development lifecycle such that quality assurance
procedures and practices are put in place and adhered to, and that they
undergo regular review.

Quality metrics include things like bug counts and size of bugs. There is
mean time to failure—what is the average lifespan of the product before it
fails to be useable? Other quality metrics range from performance to
security to interoperability. There are complexity metrics that help in quality
determination. Software quality is a major area for measurement but
software quality metrics as a topic is beyond the scope of this book. I
recommend you read Martin Shepperd’s excellent chapter on software
quality in his book Foundations of Software Measurement for starters. This
is all I have to say about quality here. I will refer to it as we progress through
the book but we are more focused on effort and productivity as you will see.

Person-day effort

One last thing to mention that I think it has been addressed in a roundabout
way already. Duration of a project is the same as elapsed time. In other
words, the duration of a project is the end-to-end number of days it takes to

Chapter 1

16

do something. My project starts March 10th and ends April 30th. How many
days is that? There are 31 days in March. Subtract 10 from 31 and you have
21 days remaining. Add 30 days to that and you have an elapsed time of 51
days. I am not considering things like weekends and Easter holidays here.
The raw end-to-end total called elapsed time is 51 days.

Effort is different in that it takes into consideration the number of people
who do the work as well as the estimated duration for each task. For
instance, if I am the only person doing my 51-day project, the effort is 51
person days. If there are two of us working on the project for 51 days, the
effort is 102 person days even though the elapsed time remains 51 days. If
the two of us can do the work in 40 days, then the elapsed time for the
project is 40 days but the person-day effort is 80.

When you plan out a project, you have to take the number of staff into
consideration. Primarily, you need to pay them, so you have to estimate the
effort required in person-days as much as the elapsed time for the project.
This book explains established techniques for calculating effort to build a
product. When these estimates are made, the project manager will then take
into consideration the person-day effort. Productivity is another way of
explaining person-day effort. We can put two people on the task of
implementing a major function that we estimate will take one person 10
days. Can we assume two people could do the work in 5 days? Is the task
something that is easily divided into two pieces that both developers can
work on full time and then join their efforts together at the end? We need to
know what the work is before we can consider the impact on effort and
duration. If it doesn’t make sense to split the task then should we leave it as
it is with one person working on it or add the other person and hope that
together they can finish the task in less time than estimated?

The consequences of this consideration moving forwards are that the
estimation techniques must take your team size into consideration. You
should also be aware that not all the team will be deployed all the time.
Analysts will start and at some point, before the end of the project, they will
have completed their work. Designers will start after the analysts and
programmers after the designers. Testers will work on the project only after
some code has been developed. So, you cannot take it for granted your team
will be working 100 per cent of the time on 100 per cent of the project.

What I would like you to take away after reading this book is that it is a
good idea to estimate the effort needed for a project. Although you are going
to be hampered by inexperience if you are a student reading this, when you

Introduction 17

go work in industry after graduating or during your placement year, you will
realise that estimation is something managers will do for good reason.

As we progress through the book, you will see that some approaches to
estimation take team size into explicit consideration whereas others do not
except in terms of productivity as explained above. Many of the
“successful” effort estimation approaches since then owe their origins to
function points, which we look at in detail later, and COCOMO.

COCOMO

Barry Boehm’s COCOMO and its successor, COCOMO II, are not really
used any more as far as I am aware. But I give you an idea of COCOMO
here because it did change the way industry worked, how projects were
managed and how estimation was done, and as such is worthy of mention.
COCOMO (COnstructive COst MOdel) applied to three classes of software
projects:

 Organic projects – “small-sized” teams with “good” experience
working with “less than rigid” requirements.

 Semi-detached projects – “medium-sized” teams with mixed
experience working with a mix of rigid and less than rigid
requirements.

 Embedded projects - developed within a set of “tight” constraints. It
is also combination of organic and semi-detached projects
(hardware, software, operational, ...).

The basic COCOMO equations take the form:
 Effort Applied (E) = ab(KLOC)bb [person-months]
 Development Time (D) = cb(Effort Applied)db [months]
 People required (P) = Effort Applied / Development Time [count]

where KLOC is the estimated number of delivered lines of code (expressed
in thousands) for a project. The coefficients ab, bb, cb and db are given in
table 1-1.

Chapter 1

18

Software
project type

ab bb cb db

Organic 2.4 1.05 2.5 0.38
Semi-detached 3.0 1.12 2.5 0.35
Embedded 3.6 1.20 2.5 0.32

Table 1-1. COCOMO coefficients

A coefficient is a constant factor or multiplier used to expressed greater
or lesser uncertainty or complexity. An organic project—something we are
used to doing—would have a coefficient of 2.4 (ab) multiplied against
estimated thousands of lines of code, multiplied by the bb coefficient 1.05.
This should result in a person-months effort. Development time is effort
applied multiplied by the coefficients of cb and db, 2.5 and 3.8 respectively.
Team size is then calculated by dividing the effort by development time.
Estimating using lines of code may be viewed as problematic because we
would need to have done quite a bit of programming already before we can
estimate lines of code with any accuracy. By which time, the project may
be nearer the finish line than the start! There are also a significant number
of complexity and environmental factors I am ignoring such as team
experience and others. I will look at these factors more in chapters 2 and 3
especially in relation to function point analysis and use case points.

Was COCOMO any good? If it was reliable, I suspect it would still be
in use. But this does not appear to be the case. However, its very existence
changed how projects were run and that means it had a significant impact.
Without COCOMO I am not sure other software sizing approaches would
have emerged in quite the same way they did.

What this book covers
We will explore a number of more popular estimation techniques, at least
two of which may appear a little too old to concern ourselves with. But we
must look at them because they had a big impact on industrial practice and
are still in use around the world today in places, so we do need to address
them here.

Chapter 2 takes us back in time to explore function points. My goal is
not to regale you with too much history but to get as quickly as possible to
the calculations, so you know how to do them. I could have included
COCOMO as a chapter but opted for function points (FP) because it is a

Introduction 19

technique still deployed on government projects though the versions used
vary. This book explores function points Mark II designed for business
systems that emerged out of Albrecht’s original function point analysis
(FPA). The main reason to examine Mark II FPA is because it was the FP
approach more ideal to be taught on business computing and software
engineering degrees that I have taught on. It also appears somewhat simpler
than the full IBM-IFPUG Function Points approach for students to
understand.

Chapter 3 looks at use case points. Use cases are a very popular way to
diagram and document use of a software system from the user perspective
and are core to UML, the Unified Modelling Language, the standard in
designing object-oriented systems. Use case points was created when it
became clear that sizing a system described in use cases was actually much
more difficult than imagined and follows a similar structure to function
point analysis.

Chapter 4 goes agile as we explore the size estimation technique of story
points. You will have noted the repetition of “points” in function points, use
case points and story points. There are similarities in the approaches,
especially between function and use case. Story points only borrow the
name. Nonetheless, they are very popular in estimating the effort or size of
user stories, the popular agile way to document requirements. Coupled with
story points, we will describe a technique commonly used to work out the
points, “planning poker”, or as it was originally known, Delphi estimation.

Chapter 5 moves away from the “points” approaches and describes
earned value analysis (EVA), a financial indication of a project’s progress
both in terms of schedule and budget. EVA is a popular approach to
pinpointing current progress (how is our project going and is it going to
continue like this?) and is widely used across a diverse range of industries.
Earned value is not a size estimation technique and is deployed differently
to the other estimation approaches described.

Chapter 6 examines the estimation techniques deployed in Kanban agile
projects. We explore work-in-progress rates that can be viewed as a measure
of productivity, as well as techniques to estimate project duration and team
size. Kanban is becoming more popular and has been advanced by such
tools as the Trello9 board. As such, we cannot ignore this rising star of agile
development.

9 Trello is a trademarked product name for a Kanban-style board software
application owned by Atlassian. Try it out as it is fantastic and free: www.trello.com

Chapter 1

20

Chapter 7 concludes the book and draws analogies between the approaches
presented. We shall also look at where estimation has headed with a
discussion of COSMIC function points analysis and “simple function
points”, IFPUG’s standard body approach to estimating function points for
agile projects.

The Appendix provides answers and where needed some brief discussion
and explanation to the exercises set for you to do in chapters 2 through 6.

Table 1-2 shows two columns: “During-Actual” and “During-End”.
These represent the two major points at which you can apply an estimation
technique. During-Actual means at a point in the project we can examine
exactly where we are compared to where we should be according to the plan
and/or budget. During-End means we can calculate our end date at a point
during the project (other than at the very start). But shouldn’t we be applying
our estimation at the start of the project? Wouldn’t that help in determining
budget, team and project duration? Shouldn’t we add to the table a column
“Start-End”, meaning we could apply an estimation technique, such as story
points, at the very start of the project to work out the end date? In fact, we
cannot apply any sensible estimation approach right at the very start of a
project unless we are taking a blind guess. The reason being that in order to
have an estimate worth taking the time to consider, we need to know quite
a bit about our project and have an especially good idea of the proposed
product requirements. It is from these requirements (user stories, use cases,
functional requirements, inputs-outputs) that we can begin to apply our
estimates. The lag time from the start of the project to having a specification
or a well-populated backlog of user stories is significant. It can take from
weeks to months, respective to the size of the project. This time has to be
accounted for in the schedule and in the budget, and deliverables need to be
approved. Effectively, this is the analysis phase of a project—not to mention
the business analysis that needs to be done prior to systems analysis. We
can really only have a good grasp of the complexities of a project once we
have gone through at least the majority of this early lifecycle phase. It is
only at this point that we can apply our estimation approach because we
need data to work with if our result is going to be in any way meaningful.
Our size estimation is only for the code work to be done. That’s interesting
if we are to believe that only 13 per cent of project effort is in the code work,
as Boehm had calculated. Or if we are generous, 15 per cent. It appears we
are putting huge effort into calculating around only 15 per cent of a project’s
work! Is it worth all the fuss then or can we conclude that software

Introduction 21

development on projects is actually much more than 15 per cent? What
happens in the remaining 85 per cent? Who calculates that and with what?
In fact, it is the design and testing of the software, as well as the code, that
we are estimating, which is much more than the programming work.

Chapter Estimation Type / Technique /

Representation
During-
Actual

During-
End

2 Function Points Mark II

3 Use Case Points

4 Story Points (including Delphi or
“Planning Poker”)

5 Earned Value Analysis

6 Kanban (WIP, duration, team
size)

Table 1-2. Estimation approaches covered in this book and when they
are best deployed

You will note in table 1-2 that all the estimation techniques can be applied
to the During-End estimate. Only Earned Value Analysis helps represent
where you currently are during a project. This is a core purpose of earned
value. Work-in-progress—part of Kanban—is used to depict the amount of
work you should be doing at any one point in time which is not necessarily
the same thing as comparing where you should be against where you are.
You could count items in the Done column of a Kanban board against those
remaining to give an idea of percentage progress and hence estimate how
much time is remaining.

Also note that Delphi is subsumed within Story Points because Delphi
is a process employed to size stories and of itself a tool used in helping
estimate size. Delphi estimation (now typically referred to as “planning
poker” in the agile community) is a core practice that can be used across all
approaches to estimate the relative size of a feature, function, requirement,
user story or use case.

Chapter 1

22

There’s a lot to talk about with each approach and I will do that in each
chapter on the specific approach. I would like to note, though, that we may
also need to consider—in relation to table 1-2—whether we have the
appropriate team size to address the schedule. Schedule estimates will
change throughout a project and it’s important to recognise when a
significant change in team size may be required to complete closer to the
deadline than the current trajectory might indicate. The different approaches
to estimation—addressing size and schedule—can be used to guesstimate
the necessary team size now required to complete on time or nearer on time.
Notwithstanding Brooks’ Law10, the only approach tabled that explicitly
looks at team size is part of the Kanban estimation suite. Brooks’ Law
states—from Fred Brooks’ bitter experience!—that adding staff to a project
that is already late will only make it later. This is borne out by his experience
where many projects overrunning having had staff added late to help speed
up the delivery only delayed the projects even further. Staff who join a
project, no matter how experienced, need time to get up to speed. Who is
going to help these new team members do just that? Those currently
engaged flat out on the project is who. If these current staff have to pause
working to help their new colleagues get up to speed (understanding the
project context; the project environment—who is doing what, where the
documentation is at; figuring out the requirements and so on), then
inevitably the work rate will slow down on a project already running behind
schedule. Hence, Brooks’ experience that a project running late will only
run later if staff are added late.

Limitations of this book

The explanations and examples provided in this book are limited in
complexity because of the experience of the audience the book is targeted
at. There is no doubt a lot more to say about each technique as I represent
it. For further details, I recommend readers check the references provided
throughout the book. I have also limited the techniques we look at because
I think some are no longer in use and other newer ones may not be having
any significant impact yet. However, I will briefly discuss two of the newer
approaches in chapter 7 that are current incarnations of function points
analysis.

10 Fred Brooks (1995), The Mythical Man Month—Anniversary Edition, Addison-
Wesley, ISBN: 978-0201835953

