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PREFACE 
 
 
 
Cancer is the second most common disease-related cause of death among 
patients below the age of 70 years and is considered the most significant 
cause of death in the 21st century. It is the major obstacle to the increase of 
global life expectancy. It has spread in 91 countries and the fast growth of 
cancer incidence and mortality now attracts significant attention from the 
governments, the medical industry and the scientific community. In answer 
to the question of how we can reduce the cancer-related death rate, there 
have been increasing advances in the development of effective and safe 
drugs for the treatment of cancers. In the recent years, Artificial Intelligence 
(AI) has shown immense potential in the field of health sciences and has 
contributed significantly at each stage of cancer. The contributions of AI 
include reliable early detection, stratification, determination of infiltrative 
tumor margins during surgical treatment, drug and therapy response, 
tracking tumor progression and resistance to treatments, prediction of tumor 
aggression, evolution pattern of tumors, and its repetitiveness. Machine 
learning (ML) and AI have enabled the development of new ways to analyze 
big datasets more quickly and cost-effectively. The deep learning 
mechanisms have solved problems and enhanced the decision-making 
abilities for ‘multiomics’ data (genomics, epi-genomics, transcriptomics, 
proteomics, and metabolomics), and ‘non-omics’ data (medical/mass-
spectrometry imaging, patient clinical history, treatments, and disease 
endemicity), helping to overcome the challenges of accurate detection, 
prediction, diagnosis, and treatment of cancer patients. As AI reduces the 
fuzziness and randomness of data handling, it can serve as the primary 
choice for data mining and big data analysis. The role of AI in handling the 
big data analysis includes: (a) analysis of complex and heterogeneous 
multiomics and/or interomics datasets; (b) providing holistic disease 
molecular mechanisms; (c) identification of diagnostic and prognostic 
markers; and (d) monitoring a patient’s response to drugs and therapy, and 
their recovery. Precision medicine is used to treat cancer patients given the 
heterogeneity of diseases. Oncology has seen extensive benefits from AI 
in the treatment of cancers including early detection, prediction, and 
treatment for future outcomes. Next generation sequencing (NGS) has 
addressed certain demands and has become a prominent player in the 
revolution of precision oncology. The various clinical applications of NGS 
include risk prediction, early detection of disease, diagnosis by sequencing 
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and medical imaging, accurate prognosis, biomarker identification, and the 
identification of therapeutic targets for novel drug discovery. The large 
datasets generated by NGS require expertise in the bioinformatic resources 
to analyze clinically relevant and significant data. The application of AI is 
crucial in aspects of radiology such as X-rays, ultrasounds, computed 
tomography (CT/CAT), magnetic resonance imaging (MRI), positron-
emission tomography (PET), and digital pathology. Highly specialized 
algorithms are used to analyze the data with high accuracy and speed. The 
datasets generated include information about variants with classifications 
such as benign, likely benign, variant of unknown significance, likely 
pathogenic, and pathogenic. Classifying and categorizing these data can be 
useful for the prognosis and diagnosis of cancers. The automation of 
healthcare systems is particularly important in resource-deprived developing 
countries. Shortages of well-trained healthcare workers and specialists are 
a major concern which can be addressed by implementing AI systems that 
can diagnose diseases more quickly. The other advantage of AI is that it can 
reduce the burden of health records and eliminate mandatory administrative 
formalities. Automated AI-enabled systems will allow physicians to sort 
and analyze patient health records, so that doctors can take clinical 
decisions. AI will help to ease the well-documented workload of physicians. 
Moreover, if the clinical data of cancer patients became globally accessible, 
it could be used by doctors all over the world to reliably predict the future 
risk of diseases. 

However, the implementation of AI in the health sector still faces many 
barriers despite its obvious usefulness. With computational automation, 
there is a flood of big data and costs. As these data depend on the specialized 
requirements of the fast processing of data, AI systems have become very 
expensive. These systems also require additional quality processes. If the 
data can be predicted and interpreted properly, with expertise and with an 
understanding of the system, AI systems can offer accurate data and image 
analysis. A major hurdle to the advancement of AI is found in the ethical 
challenges which occur in the healthcare industry. Ethical guidelines are 
required to protect the patient’s safety and privacy. Public access to these 
data will have legal consequences. With advances in AI technology, AI will 
definitely overcome these limitations and challenges. Also, other molecular 
characterization technologies such as multiomic approaches, drug/therapy 
treatments, and combination treatments of drugs beyond monotherapy will 
increase the clinical utility and scope of personalized treatments for cancer 
patients in the future. 
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Welcome to the first edition of the book, Artificial Intelligence Multiomics 
in Precision Oncology. The aim of the book is to introduce to readers and 
researchers in various fields the latest development in big data multiomics 
techniques and its advancement with AI in precision oncology. As cancer is 
a heterogeneous disease, AI approaches should enable non-effective 
treatments to be quickly replaced by alternative combination therapies so 
that patients can recover more quickly and survive longer. Despite many 
challenges and ethical issues, we have ‘long-term optimism’ about the role 
AI Multiomics can play in precision treatments for cancer patients. 
Hopefully, AI based tools will also develop to guide the unexplored 
personalized follow-up treatments for cancer patients in the future. 
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CHAPTER 1 

INTRODUCTION 
 
 
 
Cancer is a group of diseases which is characterized by the uncontrolled 
growth and spread of abnormal cells. It can result in death if not treated 
properly. Although the causes of cancer development are not completely 
understood, numerous factors are known to increase risk, including many 
that are potentially modifiable (e.g., tobacco use and excess body weight) 
and others that are not (e.g., inherited genetic mutations). These risk 
factors may act simultaneously or in sequence to initiate and/or promote 
cancer growth. More than 1.9 million new cancer cases are expected to be 
diagnosed in the United States in 2022; this excludes basal cell and 
squamous cell skin cancers and carcinoma in situ (non-invasive cancer) 
except for urinary bladder. The cancer immunity cycle with the different 
roles of cells is shown in Figure 1.  

Advances in multidimensional omics technologies from Next Generation 
Sequencing (NGS) to Mass Spectrometry (MS) have created a pool of 
useful information which can be used in the treatment of diseases. AI 
mediated data integration enables the understanding of complex disease 
systems by describing all the biomolecular entities from DNA to 
metabolics. Multiomics approaches have diversified applications, not only 
in oncology, but also in veterinary medicine (1), microbiology (2), 
agriculture sciences (3), biofuel (4), biomedical sciences (5,6), and many 
others. The speed, accuracy, and affordability of NGS data have helped the 
activation of personalized treatment based on the disease, driving 
molecular alterations in cancer treatment. NGS data has been tested in 
many healthcare settings and it is in advanced use in oncology. Physicians 
match the sequencing data of a patient’s tumor with the designed therapies 
to target the genetic alterations driving the tumor growth. These therapies 
are known as sequencing-matched therapies. The entire diagnosis depends 
on the efficient use of genomic data, clinical information, and patient 
preferences in making clinical decisions that improve outcomes by 
matching each patient with the therapy best suited to treat their cancer. 
The incorporation of NGS into treatment improves patient outcomes in 
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both treatment response and disease-free survival. It does, however, 
generate controversy related to the insurance coverage of the patients and 
this topic is still under debate. NGS technologies have generated a 
significant amount of information related to the disease progression, the 
understanding of cancer biology, and treatments for cancer patients. 

 

Figure 1: The cancer immunity cycle showing the different roles of cells. The cycle 
starts with the release of antigens and ends with the formation of immunity to the 
cancer cells. Reused from  
https://twitter.com/roche/status/1097496056072495106?lang=ca). 

The term ‘Transcriptomics’ represents active genes as well as long 
noncoding RNAs, short RNAs such as microRNAs, and small nuclear 
RNAs in a defined physiological condition. The two main applications of 
research include transcript discovery and RNA quantification. 
Transcriptomic analysis evaluates overall transcripts in a metabolic 
process, while the targeted approach provides information regarding 
known genes. A differential expression (DE) of protein-coding RNA 
provides insight into the disease mechanism, integrated with genomics and 
proteomics to discover novel genes and their functional relevance. 
Noncoding RNAs have regulatory functions in several metabolic diseases, 
neurological disorders, and cancers. Transcriptome is directly correlated to 
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any epigenomic change that manifests cancer. The integration of 
transcriptomics and epigenomic data could thus extend our understanding 
of cancer biology in various types of cancers. 

 

Figure 2: The schematic representation of 10Vs (big data) for whole-exome 
sequencing. (Reused from Suwinski P. et al. Front. Genet. 2019;10:49.) 

Genomic data relies entirely on the nucleotide sequences, including 
expressed sequence tags (ESTs), cDNAs, and gene arrangements on the 
respective chromosomes. Rapid advances in NGS data and in silico 
approaches lead to high throughput data for whole-genome sequencing 
and epigenomics. WGS explores all types of genomic alterations in cancer 
and provides information on the range of driver mutations and mutational 
signatures for the non-coding regions in cancer genomes. WGS is thus a 
powerful tool to understand cancer genomics that contains unpredictable 
numbers of point mutations, fusions, and other aberrations. Though the 
target approaches using whole-exome sequencing (WES) are much easier 
to analyse, little information related to untranslated, intronic, or intergenic 
regions is missed out, which also affects the molecular pathogenesis of 
cancer [7]. The 10 Vs (volume, velocity, variability, variety, veracity, 
validity, vulnerability, volatility, visualization, and value) for whole-
exome sequencing are given in Figure 2. 
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There are several limitations associated with the WGS data. Many of the 
clinical reports lack a comprehensive clinical annotation linking genomic 
events to specific cancer types, diagnosis, and treatment of responses. 
Also, most of the genomic data is focussed on the target approaches. Since 
most of the preliminary studies are performed on the untreated cancers, it 
does not provide insight into the response for the treatments [8]. It is, 
therefore, better to integrate the cancer genomic data with clinical 
physiology data for treatment efficacy. All the multiomics techniques 
related to the system biology (transcriptomics, epigenomics, genomics, 
proteomics, and metabolics) (Figure 3) will be discussed in detail in the 
next few chapters.  

 

Figure 3: Representation of multiomics approaches between system biology. 
(Reused from Schmidt. DR. et al. CA a Cancer Journal of Clinicians 2021; 71(2): 
333–358.) 

According to Prof. Marc Wilkins, a proteome is the entire complement of 
proteins that is or can be expressed by a cell, tissue, or organism at a given 
time. Proteomics reveal information about cellular/molecular responses to 
(epi-) genomics, environmental alterations, and their feedback responses. 
Mass spectrometry (MS) based proteomic approaches include explorative 
proteomics, targeted proteomics and MS imaging, which focus on all 
proteins of a cell/organism, subsets of proteins, and location of proteins. 
The explorative workflow of proteomics includes sample preparation, 
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mass spectrometry, and data analysis. MS also has applications beyond 
disease diagnostics. MS can monitor the feedback responses towards 
therapy, identification of drug toxicity, and discovering new biomarkers. 
For this purpose, high quality datasets are required. Other requirements 
include improvements in MS-instrument quality and robustness, automated 
sample processing, robust data analysis pipelines, and online automation 
(cloud computing) to integrate results, datasets, and data portability. 
Furthermore, the Human Proteome Organization (HUPO) has set up 
guidelines for sample collection viz. selecting appropriate disease controls, 
categorizing disease and sub-disease status [9], storage to rule-out pre-
analytical variables (including patient and instrumental factors) that 
contribute to a large extent of variation, calibrating MS instrument for 
data-quality assurance, data reporting for untargeted and targeted [10] 
analysis. An amalgamation of proteomics data with interomics data and 
cancer histopathological images using AI has advanced the identification 
of metabolic pathways. Post-translation modifications, including 
phosphorylation, glycosylation, ubiquitination, and nitrosylation enrich the 
protein repertoire (protein isoforms) and affects protein functions 
(transport, enzymatic activity), and intracellular signaling pathways in 
cancer. The classification of specific reforms provides unmatched clinical 
sensitivity and specificity. Metabolomics is a newly emerging ‘omics’ 
field which is used for comprehensive and simultaneous systematic 
determination of metabolite levels in the metabolome and their changes 
over time as a consequence of stimuli. Metabolomes are dynamic and 
complete sets of small-molecule metabolites, while metabolites are the 
intermediates and products of metabolism. There are primary and 
secondary metabolites. Metabolites have multiple categories such as 
antibiotics, pigments, carbohydrates, fatty acids, and amino acids. 
Metabolomics is the systematic analysis of small molecules (<1kD) within 
cells, biofluids, tissues, or organisms involved in primary or secondary 
metabolic processes. Metabolite changes significantly during the process 
of normal growth and development and/or exposure to stress, allergens, 
and disease conditions [11-13], which relates strongly to the final clinical 
phenotype. Metabolics thus enhance the molecular understanding of 
disease mechanisms, progression, response to drugs/treatments, and 
recurrence probability. The workflow of metabolics comprises metabolite 
extractions, separation by liquid/gas chromatography, capillary electrophoresis 
and ion mobility, detection by mass spectrometry (MS), or nuclear 
magnetic resonance (NMR) spectroscopy and data analysis. In recent 
years, there have been advances in the applications of metabolics as a 
result of the discovery and development of soft ionization tools such as 
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electrospray ionization (ESI) and matrix-assisted laser desorption 
ionization (MALDI). Several separation-free MS techniques are available, 
including direct infusion-MS, MALDI-MS, mass spectrometry imaging 
(MSI), and direct analysis in real-time mass spectrometry. High-
throughput MSI analysis is a powerful tool for the identification of 
biomarker, tracking drugs and its metabolites, imaging drug-response at 
cellular-level. These tools also identify unique and specific biomarkers 
(lipid signature) and therapeutic targets to classify various types of cancer. 
MS-based metabolomics revealed four metabolites (oleanoic acid, 
taurochenodeoxycholate, palmitic acid, and d-sphingosine) as highly 
discriminative potential prognostic markers.  

By definition a biomarker is ‘a characteristic that is objectively measured 
and evaluated as an indicator of normal biological processes, pathogenic 
processes or pharmacological responses to a therapeutic intervention’. 
Biomarkers are categorized as diagnostic biomarkers, prognostic biomarkers, 
predictive biomarkers, and predisposition biomarkers. Diagnostic 
biomarkers are used to determine the specific health disorder of the 
patient; prognostic biomarkers help to chart the likely course of the 
disease; predictive biomarkers indicate the probable response to a 
particular drug; and predisposition biomarkers indicate the risk of 
developing a disease. Biomarkers can positively impact the treatment of 
patients by predicting individual disease risk, allowing early detection of 
disease, which often increases the effectiveness of treatment. They also 
improve diagnostic classification which in turn may promote personalized 
treatment. They also enable monitoring of the progress of a given therapy. 
Till now very few omics-derived biomarkers have made it into clinics. The 
complexity of cellular processes involved in tumor formation, heterogeneity 
of neoplasia (different tumors, intertumoral, and intratumoral), non-optimal 
study design, and poor methodological robustness and reproducibility are 
the main factors for the large gap between the number of omics-based 
biomarkers found in research and those introduced in clinics [14] 

The quality, quantity, and availability of tumor tissue from cancer patients 
pose challenges to the clinical implementation of precision medicine. The 
processing of formalin-fixed, paraffin-embedded fragments can alter 
nucleic acids, and low tumor content in tumor samples can decrease the 
sensitivity of tests and lead to false-positive mutation calls. The biopsies 
collected at a single time point may not account for intratumoral 
heterogeneity in space or time. To overcome these limitations, multiple 
biopsies are needed which is inhibited by the extent of resources needed 
and by the requirement to ensure patient safety. There are circulating 
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tumor-specific markers which include circulating tumor cells (CTC) or 
circulating tumor DNA (ctDNA), as well as RNAs, proteins, or 
metabolites that are present in body fluids such as blood, urine, and 
peritoneal or cerebrospinal fluid [15]. Ideally, biomarkers should be 
analyzed in non-invasive biospecimens like blood, plasma, serum, urine, 
saliva, or stool. Liquid biopsies are easily accessible through minimally 
invasive procedures that can be repeated to provide a dynamic and 
longitudinal assessment of tumor-specific diagnostic, prognostic, or 
predictive biomarkers. Yet the Omics-derived biomarkers are still not 
helping pediatric oncologists in decision-making. Drug target discovery is 
a crucial step for the development of cancer drugs and precision 
therapeutics. Traditional drug target discovery consists of biomolecules 
with a confirmed mechanism of action, which is selected in a series of 
studies [16, 17]. Over the last decade, putative drug targets have been 
identified through the latest NGS approaches in combination with 
experimental validation. This has included overexpression or knockdown 
by RNAi and the use of transgenic animals and model organisms [18]. 
Multiomics approaches may allow systematic assessment of drug 
discovery for personalized cancer therapy and improve the efficacy of 
chemotherapy [19, 20]. Refining molecular-defined subsets of patients can 
provide information on drug response and resistance among the individual 
patients. In recent studies the expression of lncRNA, miRNA, mRNA, 
methylation, and the profile of somatic mutations with the expression of 
drug response-related lncRNAs were integrated. Fourteen cancer subtypes 
from TCGA multiomics datasets were analyzed, revealing 40 driver genes 
associated with the Wnt, Notch, Hedgehog, JAK/STAT, NK-KB, and 
MAPK signaling pathways [21]. Among them, well-known driver genes 
such as EGFR, ERBB2, PIK3CA, and KRAS were confirmed to be 
upregulated in several cancers, and DCUN1D1 and NSD3 were identified 
as new driver genes. The success of trastuzumab (an agent targeting 
HER2) in breast cancer has opened a new era of novel druggable targets in 
cancers. Proteomic analysis of 105 breast cancer patients has explained the 
association of this cancer type with CDK12, PAK1, PTK2, RIPK2, and 
TLK2 amplicons, and highlighted the overexpression of EGFR following 
the loss of CETN3 and SKP1 [22]. There have been tremendous advances 
in the progress of tumor metabolites. The consumption and release 
(CORE) profiles of 219 metabolites from NCI-60 cell lines were detected 
and after the integrated analysis of CORE profiles with gene expression 
data, it was seen that the glycine consumption and upregulation of the 
mitochondrial glycine biosynthetic pathway were highly correlated with 
the proliferation of cancer cells [23].  
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Drug repurposing (also known as ‘new uses for old drugs’) is a strategy to 
identify new uses for approved or investigational drugs that are outside the 
scope of the original medical indication. Drug repurposing is also known 
as drug repositioning, drug reprofiling, indication expansion, or indication 
shift. It involves establishing new medical uses for already known drugs, 
including approved, discontinued, shelved, and experimental drugs. 
Although this strategy is far from new, it has gained considerable attention 
and momentum in the last decade. About one-third of the approvals in 
recent years correspond to drug repurposing; repurposed drugs currently 
generate around 25% of the pharmaceutical industry’s annual revenue. 
Many drug repurposing initiatives have been undertaken by public and 
nonprofit organizations. New therapeutic uses for existing compounds 
were initiated by the NIH–National Center for Advancing Translational 
Sciences in partnership with several pharmaceutical companies. The main 
advantages of these drugs were that they have already proven to be 
sufficiently safe in preclinical models or in early human trials so they are 
less likely to fail, at least from the safety point for the efficacy of drugs. 
Also, as approved drugs have successfully passed clinical trials and 
regulatory security, and have already undergone post-marketing 
surveillance, it is easy to reuse them for other diseases. 

Many repurposed drugs, such as sildenafil, minoxidil, aspirin, and valproic 
acid are used, relying on the already known drug (e.g. an off-target 
adverse effect) pharmacology to solve a clinical problem for another 
purpose. In recent years, the drug discovery community has implemented 
an organized, systematic, data-driven drug repurposing approach which 
has integrated computational resources. Among them, are the signature 
matching of transcriptomic or proteomic data; similarity search 
approximations; structure/ligand-based virtual screenings; and systematic 
analysis of electronic health records, clinical trial, and postmarketing 
surveillance data. In the field of precision oncology, multiomic approaches 
have improved understanding of tumor biology and increased treatment 
opportunities. The ACNS02B3 brain tumor biology study, led by the 
Children’s Oncology group across several institutions has successfully 
expanded molecular profiling beyond genomics. Beyond single gene 
analyses, mutational signatures, RNA-based gene expression profiling, 
immunophenotyping, and TMB determination have proven to be useful 
prognostic and predictive biomarkers for response to anticancer therapies, 
but it is still not clear whether it will produce more successful treatment 
opportunities. The application of molecular profiling in clinics still faces 
several challenges. Data interpretation of patients with complex genomics 
is a big challenge. The molecular tumor board (MTB) has been 
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constructed to fully exploit the potential of NGS-driven therapy. MTB 
brings the interdisciplinary expertise for advance stage cancers from all 
over world so that the advice can be used for the treatment of cancer 
patients. The multi-disciplinary teams include oncologists, research 
scientists, bioinformaticians, pathologists, medical geneticists, genetic 
counselors, and genomicists, among others. The patient’s clinical, 
pathologic, and molecular information is examined and, based on previous 
treatments and reviews of available resources for similar cases, a 
consensus is reached over possible treatment suggestions [24]. The 
interdisciplinary teams of MTB result in significant changes in treatment 
decisions [25]. The impact of MTB on outcomes has not yet been studied 
in depth, but they can help to identify patients for clinical trials, educate 
patients about their cancers, facilitate collaboration, and ensure that the 
tests and treatment of patients can be carried out in a uniform and 
consistent manner, based on clinical guidelines and the best available 
evidence. The application of AI to precision oncology is still in its infancy. 
Many proof-of-concept studies have been witnessed that offer a glimpse of 
what the NGS of precision oncology could look like Though there remain 
many challenges to be overcome for AI to make a mark in medicine, 
expectations are justifiably high, but true progress can only come from a 
deeper understanding of the discussed limitations and how to rectify them 
in an efficient manner. We look forward to seeing how AI may enhance 
precision oncology approaches and improve patient care around the world 
in the future [26] 

In the coming chapters, we will cover the benefits and challenges in NGS 
technologies which will, over time, achieve long-term benefits for cancer 
patients including early prognosis, diagnosis, significant treatment, and 
overall survival. 
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2.1 Introduction 

The revolution in genomic research comes with the development of next-
generation sequencing (NGS), massively parallel or deep sequencing that 
describes a DNA sequencing technology. Next-generation sequencing 
(NGS) technologies are seen as the next step in the evolution of DNA 
sequencing through the generation of thousands or even millions of DNA 
sequences in a short time. The relatively fast emergence and success of 
NGS in research has developed the field of genomics and medical 
diagnosis. With NGS, the old traditional diagnostic model has changed to 
one precision medicine model, leading to more accurate diagnosis of 
human diseases. Using NGS, an entire human genome can be sequenced in 
a single day speeding up the selection of molecular target drugs for 
individual treatment. The application of NGS includes variant detection, 
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whole-exome sequencing (WES), whole-genome sequencing (WGS), 
custom panels (multi-gene), RNA-seq, and epigenetics among others. In 
this chapter we have included a detailed description of NGS (till fourth 
generation sequencing) that could help, scientists, researchers, and 
healthcare professionals to understand how to translate the genomic data 
into genomic medicine. 

2.2 History 

The concept ‘inborn error of metabolism’ introduced by Garrod in 1908 
has changed the areas of biochemistry, genetics, and medicine [1]. His 
principal contribution includes the understanding of the relationship 
between gene-enzyme mechanisms which is the molecular basis of genetic 
diseases. Though his research has been superseded by the latest advances 
such as RNA splicing, RNAi, and others, his contributions allowed 
researchers to understand how changes in DNA sequence could cause 
genetic disease. All these findings became the basic concepts in the 
understanding of human DNA sequence and mutations. In 1960s, the 
search began to ascertain the nucleotide sequence of DNA with several 
studies that demonstrated new methods with different strategies [2–6].  

2.2.1 First generation sequencing 

In 1977, Sanger developed the ‘chain-termination’ method that launched a 
new era for first generation sequencing to sequence DNA. In this method, 
dideoxynucleotides (ddNTPs) were used. These are deoxynucleotide 
analogs (dNTPs) that disrupt DNA synthesis and separate different DNA 
fragments in a gel. These special nucleotides were radiolabeled enabling 
the sequence to be inferred after the disclosure of gel autoradiography [7]. 
Numerous modifications, such as the substitution of nucleotide radiolabeled 
to fluorescence, allowed the sequencing reaction to occur in one tube [8], 
the development of the polymerase chain reaction (PCR) [9], the 
separation of DNA fragments by capillary electrophoresis [10], and later 
the development of equipment that allowed the sequencing of more 
complex genomes to make the method more efficient, robust, and 
sensitive. Sanger is still considered the gold-standard method in diagnostics. 
As recent methods are not fully efficient, a lot of modifications have been 
done to make these techniques more efficient. Nowadays Sanger 
sequencing has been partly replaced by ‘next-generation’ sequencing 
(NGS) methods [11, 12]. The emergence of NGS has changed basic and 
applied sciences as well as clinical research. NGS allows identification of 
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biomarkers for early diagnosis, personalized treatments and produces 
millions of data with a minimum investment [11, 13]. 

2.2.2 Second generation sequencing 

The Human Genome Project has produced 3 billion sequenced bases at the 
estimated cost of around $2.7 billion [14] in 13 years. The second 
generation of DNA sequencing was the era of parallel massive sequencing 
on a micro scale, which was developed by Nyrén and colleagues in 1996 
with the name ‘pyrosequencing method’. This technique differed 
substantially from previous ones because it did not use radio or 
fluorescence-labelled nucleotides and there was no need for an 
electrophoretic run. The method is based on the action of two enzymes: 
ATP sulfurylase and luciferase. ATP sulfurylase converts pyrophosphate 
released in nucleotide incorporation into an ATP molecule that is used by 
luciferase substrate. This process releases light signals in proportion to the 
amount of nucleotides incorporated, and the sequence can be determined 
according to the serial addition of nucleotides [15]. Improvising this 
technology, ‘second-generation’ equipment, 454 (Roche), was first 
developed. The DNA was binded in beads through an adapter and 
amplified in water-in-oil microreactors (emulsion PCR). These changes, 
along with the use of compartmentalized microplates and high-definition 
detection systems have dramatically increased the amount of sequenced 
DNA [16]. Other related technologies include ‘Illumina’ which consists of 
binding the DNA in a flow-cell through adapters; the parallel massive 
amplification occurs in clusters for each DNA strand that was originally 
bound in the flow-cell. This is called bridge-amplification. The advantage 
of this process is that it generates paired-end sequences, which make it 
superior to the other process since it improves the accuracy of mapping 
mainly in repetitive regions or where DNA rearrangements or gene fusions 
occur. ‘Reversible terminator chemistry’ is used in this method which is a 
modified fluorescent dNTP that reversibly blocks DNA synthesis, so that 
the addition of each nucleotide can be synchronized and monitored by a 
charge-coupled device (CCD) sensor [17]. This technique is the most 
accurate and has the lowest error rate of the sequencing methodologies 
used so far. The disadvantage is that it generally requires higher DNA 
concentration. SOLiD is another methodology, based on oligonucleotide 
ligation sequencing known as SOLiD developed by Applied Biosystems 
(now Thermo Fisher Scientific). The advantage of this method is the speed 
of the process and the low cost of the equipment, yet the disadvantage is 
the detection of homopolymers. Interestingly the second generation of 
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sequencing has a high capacity of sequencers in the generation of data in a 
single run and consequently the computational bioinformatics tools to 
analyse them. The ‘Single Molecule Real Time’ (SMRT) method 
commercialized by Pacific Biosciences is used for second-generation 
sequencing. The SMRT method consists of the immobilization of a single 
molecule in a chamber called ‘zero-mode waveguide (ZMW)’ where the 
incorporation of the fluorescent nucleotides occurs. ZMW allows the 
incorporation of each nucleotide to be monitored in real time and without 
interference from other light signals. The reads are very long (40 kb) and 
allow the detection of modified bases [18, 19].  

Nanopore sequencing technology is a unique and scalable technology that 
enables direct and real-time analysis of long DNA or RNA fragments. As 
nucleic acids are passed through a protein nanopore, the changes are 
monitored by an electrical current. The resulting signal is decoded to 
provide the specific DNA or RNA sequence. The detection occurs as a 
result of differences in the current of ions generated by each nucleotide. 
The reads are incredibly long (500 kb), and the process is extremely fast 
without the need for special nucleotides. Oxford Nanopore Technologies 
(ONT) has used this technology to commercialize sequencers, including a 
portable version (MinION) that was used to sequence a mixture of 
bacteriophage, E. coli, and mus musculus DNA on the international space 
station (ISS) [20]. In spite of high error rates, it is used in the assembly of 
complex regions of the genome where gene fusions, large deletions and 
insertions, and repetitive regions occur.  

2.2.3 Third generation sequencing 

Third-generation sequencing allows long-read sequencing of individual 
RNA molecules [21]. Single-molecule RNA sequencing enables the 
generation of full-length cDNA transcripts without clonal amplification or 
transcript assembly. Third-generation sequencing is free from the 
shortcomings generated by PCR amplification and read mapping. It greatly 
reduces the false positive rate of splice sites and captures the diversity of 
transcript isoforms. Pacific Biosciences (PacBio) single-molecule real-
time (SMRT) sequencing [22], Helicos single-molecule fluorescent 
sequencing [23], and Oxford Nanopore Technologies (ONT) nanopore 
sequencing [24] all comprises the single-molecule sequencing platforms. 
The evolution of these first, second, and third sequencing techniques is 
shown in Figure 1. 
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Figure 1: The evolution of first, second, and third generation sequencing 
technologies with their features, advantages and disadvantages. (Reused from 
(https://twitter.com/pacbio/status/1233091102800011266.) 

2.2.4 Fourth generation sequencing 

Fourth-generation RNA sequencing provides a direct in situ sequencing 
(ISS) and fluorescent ISS (FISSEQ). Although ISS and FISSEQ 
technologies have their own strengths in detection, they are still in the 
early developmental stage and many technical aspects need to be 
addressed before they can be applied in cancer research and clinical 
applications. The ISS method applied padlock probes combined with 
rolling circle amplification (RCA) to generate in situ amplified targeted 
sequencing libraries that are subsequently sequenced via sequencing-by-
ligation NGS chemistry [25]. Through sequencing of a molecular barcode, 
consisting of four bases in the non-target hybridization part of the padlock 



Chapter 2 
 

18

probes, the ISS method can simultaneously sequence up to 256 unique 
transcripts. As this method uses target specific padlock probes to create 
rolling circle amplification products, it is used only for sequencing known 
genes, such as gene panels. In contrast, the fluorescent in situ sequencing 
(FISSEQ) method uses random hexamers with a sequencing primer tag to 
initiate in situ real time (RT). Unlike cDNA in ISS, the resultant cDNAs 
are circularized using CircLigase. During RT, dUTP is introduced and the 
cDNAs are crosslinked to tissue with the reagent BS (PEG) [26] to prevent 
diffusion of the cDNAs. After rolling circle amplification (RCA), the 
products are sequenced by using the same sequencing by ligation 
techniques. By applying FISSEQ with a 30-base read length, 156,762 
reads covering 8,102 annotated genes in human primary fibroblasts were 
obtained [27]. 

Compared to ISS methods, FISSEQ generates random libraries and allows 
an unbiased analysis of all cellular transcripts at a single-cell resolution. 
Since the majority of sequenced molecules are rRNAs, the number of 
transcripts detected in each cell is low [28]. ISS technology uses targeted 
gene panels and thus the sensitivity of ISS is around two orders of 
magnitude higher than that of FISSEQ for any given gene [29]. 

The main bottlenecks of these technologies are tissue preparation, 
optimized methods for improving efficiency, computational tools, and 
imaging scale. Fourth-generation RNAseq can potentially become a 
straightforward method for high-throughput spatial transcriptomic analysis 
in the years ahead provided that the technical obstacles can be handled in a 
proper manner. 

2.3 Transcriptomics 

The earliest sequencing-based transcriptomic methods, using serial 
analysis of gene expression (SAGE), worked on Sanger sequencing of 
concatenated random transcript fragments [30]. Basically, ‘Transcriptome’ 
was first used in the 1990s [31, 32]. In 1995, transcripts were quantified by 
matching the fragments to known genes. A variant of SAGE using high-
throughput sequencing techniques, called digital gene expression analysis 
(DGEA), was also used [33–34]. However, these methods were 
superseded by high throughput sequencing of entire transcripts, as the 
high-throughput sequencing provides additional information on transcript 
structure, e.g., splice variants [34]. 


