^{By} W. D. Emmerson

Cambridge Scholars Publishing

By W. D. Emmerson

This book first published 2016

Cambridge Scholars Publishing

Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

Copyright © 2016 by W. D. Emmerson

All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

ISBN (10): 1-4438-9097-9 ISBN (13): 978-1-4438-9097-7

CONTENTS

Volume 1

Acknowledgements	xiii
Introduction	xvi
A History of Decapod Research in Southern Africa	xxviii
Decapod Biodiversity and Future Research Direction	xxxiii
Commercial and Artisanal Food Value of Decapods	xxxix
Classification Overview	lvi
Suborder Dendrobranchiata	
Superfamily Penaeoidea	
Family Aristeidae	
Family Benthesicymidae	
Family Penaeidae	
Family Sicvoniidae	
Family Solenoceridae	
Superfamily Sergestoidea	
Family Luciferidae	
Family Sergestidae	
Suborder Pleocyemata	113
Infraorder Stenopodidea	115
Family Spongicolidae	117
Family Stenopodidae	119
Infraorder Caridea	129
Superfamily Pasiphaeoidea	
Family Pasiphaeidae	

Contents

Superfamily Oplophoroidea	. 141
Family Acanthephyridae	. 142
Family Oplophoridae	. 151
Superfamily Atyoidea	. 161
Family Atyidae	. 162
Superfamily Bresilioidea	. 175
Family Disciadidae	. 176
Superfamily Nematocarcinoidea	. 179
Family Nematocarcinidae	. 180
Family Rhynchocinetidae	. 188
Superfamily Stylodactyloidea	. 195
Family Stylodactylidae	. 196
Superfamily Campylonotoidea	. 199
Family Campylonotidae	. 200
Superfamily Palaemonoidea	. 203
Family Gnathophyllidae	. 204
Family Hymenoceridae	. 210
Family Palaemonidae	. 216
Superfamily Alpheoidea	. 259
Family Alpheidae	. 260
Family Hippolytidae	. 280
Family Ogyrididae	. 299
Superfamily Processoidea	. 303
Family Processidae	. 304
Superfamily Pandaloidea	. 311
Family Pandalidae	. 312
Family Thalassocarididae	. 325
Superfamily Crangonoidea	. 327
Family Crangonidae	. 328
Family Glyphocrangonidae	. 334
Infraorder Astacidea	. 341
Superfamily Enoplometopoidea	. 345
Family Enoplometopidae	. 346
Superfamily Nephropoidea	. 353
Family Nephropidae	. 354
Infraorder Axiidea	. 367
Family Axiidae	. 370
Family Callianassidae	. 372
Family Calocarididae	. 382

A Guide to, and Checklist for, the Decapoda of Namibia, South Africa and Mozambique	vii
Family Micheleidae	. 383
Infraorder Gebiidea	. 385
Family Laomediidae	. 386
Family Upogebiidae	. 388
Infraorder Achelata	. 399
Family Palinuridae	. 401
Family Scyllaridae	. 491
Infraorder Polvchelida	. 511
Family Polychelidae	. 513
Index	. 524

Volume 2

Infraorder Anomura	1
Superfamily Chirostyloidea	7
Family Chirostylidae	
Family Eumunididae	
Superfamily Galathoidea	
Family Galatheidae	
Family Munididae	
Family Munidopsidae	
Family Porcellanidae	
Superfamily Hippoidea	59
Family Albuneidae	
Family Hippidae	
Superfamily Lithodoidea	
Family Lithodidae	
Superfamily Paguroidea	
Family Coenobitidae	
Family Diogenidae	
Family Paguridae	
Family Parapaguridae	
Family Pylochelidae	
Infraorder Brachyura	
Section Podotremata	
Superfamily Cyclodorippoidea	

Contents

Family Cyclodorippidae	. 194
Family Cymonomidae	. 200
Superfamily Dromioidea	. 203
Family Dromiidae	. 204
Family Dynomenidae	. 225
Superfamily Homolodromioidea	. 227
Family Homolodromiidae	. 228
Superfamily Homoloidea	. 231
Family Homolidae	. 232
Family Latreilliidae	. 238
Superfamily Raninoidea	. 245
Family Lyreididae	. 248
Family Raninidae	. 251
Section Eubrachyura	. 263
Subsection Heterotremata	. 265
Superfamily Aethroidea	. 267
Family Aethridae	. 257
Superfamily Calappoidea	. 273
Family Calappidae	. 274
Family Matutidae	. 293
Superfamily Cancroidea	. 301
Family Atelecyclidae	. 302
Family Cancridae	. 308
Superfamily Carpilioidea	. 313
Family Carpiliidae	. 314
Superfamily Corystoidea	. 321
Family Corystidae	. 322
Superfamily Dairoidea	. 325
Family Dairidae	. 326
Superfamily Dorippoidea	. 329
Family Dorippidae	. 330
Family Ethusidae	. 338
Superfamily Eriphoidea	. 343
Family Dairoididae	. 344
Family Eriphiidae	. 348
Family Menippidae	. 360
Family Oziidae	. 362
Superfamily Goneplacoidea	. 371
Family Chasmocarcinidae	. 372
Family Euryplacidae	. 375

Family Goneplacidae	
Family Mathildellidae	
Superfamily Hexapodoidea	
Family Hexapodidae	
Superfamily Hymenosomatoidea	
Family Hymenosomatidae	
Superfamily Leucosioidea	
Family Leucosiidae	
Superfamily Majoidea	
Family Epialtidae	
Family Inachidae	
Family Majidae	
Superfamily Palicoidea	
Family Palicidae	
Superfamily Parthenopoidea	
Family Parthenopidae	
Superfamily Pilumnoidea	
Family Pilumnidae	
Superfamily Portunoidea	
Family Carcinidae	
Family Geryonidae	
Family Ovalipidae	
Family Polybiidae	
Family Portunidae	
Family Thiidae	
,	
Index	

A Guide to, and Checklist for, the Decapoda of Namibia, South Africa

and Mozambique

ix

Volume 3

Superfamily Potamoidea	
Family Potamonautidae	
Superfamily Pseudozioidea	
Family Pilumnoididae	
Family Pseudoziidae	
Superfamily Retroplumoidea	
Family Retroplumidae	
Superfamily Trapezioidea	
Family Tetraliidae	
Family Trapeziidae	
Superfamily Trichopeltarioidea	

Contents

Family Trichopeltariidae	
Superfamily Xanthoidea	
Family Panopeidae	101
Family Xanthidae	103
Subsection Thoracotremata	153
Superfamily Cryptochiroidea	155
Family Cryptochiridae	156
Superfamily Grapsoidea	165
Family Gecarcinidae	167
Family Grapsidae	176
Family Percnidae	211
Family Plagusiidae	217
Family Sesarmidae	232
Family Varunidae	279
Superfamily Ocypodoidea	295
Family Camptandriidae	296
Family Dotillidae	313
Family Macrophthalmidae	322
Family Ocypodidae	339
Superfamily Pinnotheroidea	409
Family Pinnotheridae	410
Decapod Checklist for Namibia, South Africa and Mozambique	417
References	481
Index	710

INFRAORDER ANOMURA MCLEAY, 1838

Although this infraorder has been known as the "Anomala" and included various anomalous decapods, McLaughlin & Holthuis (1985) confined only the three superfamilies Paguroidea, Galathoidea and Hippoidea to the Anomura and concluded that the name Anomura MacLeay, 1838 should be used instead of the older, but less-used name "Anomala" Latreille, 1816 (De Grave et al., 2009; Poore, 2016). The "Thalassinidea" (now recognised as two separate infraorders, Gebiidea and Axiidea, Poore, 2016) were once thought to be anomurans (Borradaile, 1903), even relatively recently (Williams, 1984), but Burkenroad (1963) excluded them, which was supported by de Saint Laurent (1979) and Bowman & Abele (1982). There was also a controversial opinion that the Dromioidea were actually anomurans (Williamson, 1992; Spears et al., 1992), but this was disputed by Scholtz & Richter (1995) and not accepted by Davie (2002b).

In an early interpretation, Warner (1977) envisioned that the Anomura emerged from the Glypheoidea during the Triassic, over 200 Mya. This was recently confirmed by Chablais et al. (2011) who found the oldest Anomuran, *Platykotta akaina*, which dated back to the Triassic, more than 200 Mya (Schweitzer & Feldmann, 2015; Table 2-1). The Paguroidea originated during the Early Jurassic, around 180 Mya (Walker, 1988; Lemaitre & McLaughlin, 2009), with hermit crabs in general dating from the Cretaceous around 100 Mya (Williams & McDermott, 2004; Lemaitre & McLaughlin, 2009). Bracken-Grissom et al. (2013), however, estimated an earlier emergence of the Anomura during the Late Permian, 296–224 Mya, with radiations of families during the Jurassic and Early Cretaceous, 180 to 120 Mya.

Various hypotheses have been forwarded for the origin and evolution of the Anomura. Martin & Abele (1986) found that within the Anomura, the Albuneidae-Hippidae branched off first, followed by a clade which had the Aeglidae emerging first followed by the Chirostylidae and the Galatheidae-Porcellanidae, while another clade led to the Lomisidae-Hapalogastridae-Lithodidae and the Pylochelidae-Paguridae-Parapaguridae-Diogenidae-Coenobitidae. In their phylogenetic analysis, Scholtz & Richter (1995) had the sequence running Polychelidae. Achelata. "Homarida" [sic], which was followed by a division into the Astacidea-"Thalassinida" and the "Anomala"-Brachvura. Using spermatozoa data. Tudge (1997) found that Hippa-Thalassina branched off after the Astacidae, followed by the Porcellanidae, Cancellus and Galatheidae-Chirostylidae, with the rest of the chirostylids, Paguridae, and Parapaguridae on another branch, while the tree terminated in the Diogenidae and Coenobitidae. McLaughlin & Lemaitre (1997), using majority rule consensus, found that the chirostylids and galatheids emerged fairly basally, after Cheiroplatea-Pylocheles-Mixtopagurus and the Lomisidae, but before Albunea-Lophomastrix-Blepharipoda and Hippa-Aegla. Within the chirostylid-galatheid clade, Galathea emerged first, followed by Munida, Gastroptvchus, Munidopsis, Uroptvchus, Euceramus, Petrolisthes and Petrocheles-Polvnvx. Crandall et al. (2000) placed the Anomura on the Reptantia line before the Brachyura, Astacidea, and "Thalassinidea"-"Palinura". Schram (2001) had the "Thalassinidea" and Brachvura on different branches, with the whole of the Anomura branching off along the Brachyuran line. Morrison et al. (2002) had the Galatheoidea branching off after the Thalassinidea and before the Lomisidae and Hippoidea, while within the Galatheoidea clade, Lomis-Aegla branched off first, followed by Munida-Eumunida and Petrolisthes-Pachycheles. Perez-Losada et al. (2002), found a basal dichotomy, with one branch leading to the Paguroidea, with the Aeglidae and Galatheidae-Chirostylidae-Porcellanidae branching off before and with the Hippoidea, "Thalassinidea" and Brachvura along the other branch. Dixon et al. (2003) also had a basal dichotomy with one branch leading directly to the Brachvura, while the other led to the Paguroidea-Lomisodea and then to the Lithodidea, Hippoidea, Galatheoidea and Aegloidea. Ahvong & O'Meally's (2004) analysis resolved the "Anomala"-Brachvura as having emerged along the "Reptantia" line after the Polychelidae, Achelata, Glypheoidea-Astacidea and "Thalassinidea". Within the Anomura these authors had the Blepharipoda-Albuneidae-Hippidae emerging basally, followed by Pylochelidae, Galatheidae, Chirostylidae-Porcellanidae in one clade and the remaining anomurans in another clade. These authors found good support for the monophyly of the Anomura. Schram & Dixon (2004) had the "Anomala" and Brachyura as sister groups after the "Thalassinidea" and Achelata, with the "Anomala"-Brachyura split occurring during the Triassic, 250-200 Mya, with the Achelata having branched off slightly before in the Triassic, and the deeper division with the "Thalassinidea" going right back to the Devonian, 400-360 Mya. MacPherson et al.'s (2005) anomuran phylogeny had the Hippidae as

basal, followed by the Lithodidae-Hapalogastridae in one branch, the another branch and the Kiwaoidea, Aeglidae in Galatheidae. Chirostylidae-Porcellanidae in a third branch. Porter et al. (2005) showed the Brachyura branching off basally followed by the Hippoidea, Aeglidae-Lomisidae-Chirostylidae-Galatheidae-Lithodidae, the Achelata and the Astacidea-"Thalassinidea". McLaughlin et al. (2007) found that the Dromiidae and Dynomenidae (Brachyura) branched of basally, followed by the Paguroidea, Kiwaoidea, Lomisoidea, then the Galatheoidea, followed by the Aegloidea, Lithodoidea and Hippoidea, These authors also showed the Anomura were a monophyletic infraorder. Tsang et al. (2008) had the phylogenetic sequence running "Thalassinidea", Hippoidea, Lomisoidea, with the anomuran families Lithodidae-Paguridae-Diogenidae-Coenobitidae forming one clade and the Galathoidea (Petrolisthes-Paramunida-Munida) and the Pylochelidae forming another clade. Lemaitre & McLaughlin (2009) reviewed research on anomuran phylogeny and found that different views have emerged from different workers using different techniques such as morphology, molecular data, larval information, spermatophore data and the fossil record itself. Bracken et al. (2009a) found that the Anomura emerged after the "Thalassinidea", followed by the Polychelida, after which there was a dichotomy, with one branch leading to the Polychelida and another to the Brachvura and Glypheidea and Achelata. Within the Anomura one branch led from Munidopsis to Munida and Petrolisthes.

Superficially this group of decapods are diverse, with some looking like crabs, some like hermit crabs, some like lobsters, while others are not easily categorised, but the small fifth thoracic leg is the only character which unites them (Poore, 2004). As all these forms could not be placed in the three superfamilies Paguroidea, Galathoidea or Hippoidea, more superfamilies had to be introduced. Martin & Davis (2001) had a four superfamily system with regard to the Anomura, while McLaughlin et al. (2007) extended this to a seven superfamily system. New molecular evidence has aided in unravelling the relationships between known anomuran families and its superfamilies. Perez-Losada et al. (2002) reviewed ideas based on traditional taxonomy with new molecular evidence and confirmed the accepted composition of the Galathoidea (Porcellanidae, Chirostylidae, Galatheidae and Aeglidae) and only differed in the relative positions of families from previous research (Martin & Abele, 1986; Tudge, 1997; see Schnabel & Ahyong, 2010, in later discussion). They also found that the Galathoidea and Paguroidea were more closely related to each other than to the Hippoidea, whereas Morrison et al. (2002) found the Hippoidea were closest to the Paguroidea.

Boas (1880) first suggested that lithodids evolved from pagurid ancestors, followed by Bouvier (1894), with the crab-like lithodid shape evolving from a shell inhabiting hermit crab. Cunningham et al's (1992) and Richter & Scholtz's (1994) data appeared to support this hypothesis. Furthermore, the larvae of the crab-like lithodids look similar to the pagurid crabs, and Cunningham et al's (1992) molecular-based work actually put two lithodid genera into Pagurus, However, McLaughlin & Lemaitre (1997, 2000) showed the reverse from adult and larval morphology: that hermit crabs developed from a lithodid-like ancestor (Davie, 2002b). It appears that carcinisation to a crab-like form has evolved independently several times in the Anomura, a phenomenon debated by McLaughlin & Lemaitre (1997), with McLaughlin et al. (2004) disagreeing with Cunningham et al's (1992) conclusions. Nuclear gene work by Tsang et al. (2011) found that not only do the hermit crabs have a single origin, but that most anomuran body forms and clades can be derived from within the hermit crabs, with the squat lobster form and crab-like form having evolved at least twice from different hermit crab ancestors (symmetrical) via intermediate forms. In addition, dextral shell habitation also evolved at least twice, once in a deep water clade and once in a common ancestor of all asymmetrical hermit crabs. Such parallelism is remarkable and exhibits phenotypic flexibility in hermit crab form. Using both molecular and morphological data, Schnabel et al. (2011) found that the Anomura fell into two major clades, one which included the Munididae sensu stricto, Galatheidae sensu stricto, Porcellanidae and Munidopsidae and another which included the Hippoidea, Paguroidea, Lomisidae, Aeglidae, Kiwaidae and Chirostylidae. A recent reconstruction of anomuran evolution by Bracken-Grissom et al. (2013) using molecular and morphological methods coupled with fossil evidence for divergence times has also revealed that most superfamilies and families are monophyletic. However, they found that three families, namely Diogenidae, Paguridae and Munididae, were either paraphyletic or polyphyletic. Using outgroups, they also found the Brachvura to be a sister taxon to the Anomura, from which they diverged during the Permian, 296 to 224 Mya. The earliest branching clade was the Blepharipodidae-Albuneidae-Hippae during the Late Triassic, 220 Mya, with the most recent split, between the Lithodidae and Hapalogastridae, estimated to be around 18 Mya. Carcinisation was shown to have occurred independently three times. Speciation rates were found to be low for the Lomisidae and high for the Chirostylidae. Bracken-Grissom et al's (2013) work also confirmed the "hermit to king" hypothesis and also found a close relationship between the pagurid

Discorsopagurus and the Lithodidea, suggesting a *Discorsopagurus*-like precursor leading to the lithodids, 29 to 18 Mya.

Although Davie (2002b) did not include any superfamilies. Poore (2004) included the Paguroidea, Galatheoidea and Hippoidea as well as Lomis, which was based on McLaughlin's (1983) phylogenetic reappraisal supported by Martin & Abele (1986). The Lomisidae appeared to be highly derived hermit crabs, possibly related to the Lithodidae, while the Coenobitidae were included with the Paguroidea (Poore, 2004). In their review of the Anomura, McLaughlin et al. (2007) subsequently gave a seven superfamily system—Aegloidea, Galatheoidea, Hippoidea, Kiwaoidea, Lithodoidea, Lomisoidea and Paguroidea—which was followed by De Grave et al. (2009). Schnabel & Ahyong (2010) raised the Chirostylidae to superfamily status, Chirostyloidea. Schnabel et al., (2011) then showed that the Galatheoidea were not monophyletic and defined the superfamilies Chirostyloidea and Galatheoidea. This evidence led to the new classification of the Galatheoidea in which the Munidopsidae were basal, followed by the Munididae, with the Galatheidae and Porcellanidae emerging lastly as sister groups (Ahyong et al., 2010). This eight superfamily system is used here. Based on both morphological and molecular methodologies the Anomura and Brachyura are monophyletic sister clades (Lemaitre & McLaughlin, 2009: Bracken-Grissom et al., 2013); the "Thalassinidea" are out of the Anomura as the infraorders Axiidea and Gebiidea (Robles et al., 2009; Poore, 2016); the Lomisoidea and Hippoidea are monophyletic; the Aeglidae are out of the Galatheoidea; the Lithodidae have their own superfamily (McLaughlin et al., 2007) although this has been contested (see De Grave et al., 2009); and there is polyphyly or paraphyly in the Diogenidae. Paguridae and Munididae (Bracken-Grissom et al., 2013). Although polyphyly was found for the Pylochelidae previously (Richter & Scholtz, 1994; Lemaitre & McLaughlin, 2009), Bracken-Grissom et al. (2013) found this family to be monophyletic. Tsang et al. (2011) showed that the symmetrical pylochelids were intermediate in two crab-like pathways, one leading via the squat lobsters to the porcellanids and another via asymmetrical hermit crabs such as the Diogenidae and Paguridae to the lithodids, which changes Cunningham et al's (1992) "Hermit to King" theory to "Hermit to All".

SUPERFAMILY CHIROSTYLOIDEA ORTMANN, 1892

Body symmetrical, carapace with or without transverse striae; rostrum, variable, but usually prominent and well-developed; supraocular spines can be present or absent. Antenna, peduncle made up of 5 segments, acicle may be present or absent. Mandible has toothed cutting edge. Maxilliped 1, with or without epipod. Pereiopods, P1 always chelate, P2 to P4 as walking legs. Maxilliped 3 and pereiopods have no epipods. Gills are phyllobranchiate. Sternal plastron made up of 3 to 7 sternites, thoracic sternite 8 without sternal plate. Abdomen, well-developed with all somites sclerotised and articulating; tail-fan well-developed and folded against preceding somite; telson and uropods laminar, telson divided transversely by a suture. This superfamily is made up of three families, Chirostylidae, Eumunididae and Kiwaidae (Schnabel & Ahyong, 2010; Schnabel et al., 2011).

The Chirostylids were previously considered part of the Galatheoidea, but this group was found to be polyphyletic which necessitated the removal of the Chirostylidae and Kiwaidae to a separate superfamily (Ahyong et al., 2010; Schnabel & Ahyong, 2010; Schnabel et al., 2011). Tsang et al. (2011), using nuclear genes, found a similar grouping with a Uroptychus-Eumunida-Kiwa clade which corresponds the to Chirostyloidea. Bracken-Grissom et al. (2013) have recently shown the Chirostyloidea to be monophyletic. These authors showed that after the Hippoidea, radiation during the Late Triassic led to emergence of the Chirostyloidea from squat-lobster ancestors around 205 Mya, with a split with the Lomisoidea around 122 Mya, which coincides with recent fossil evidence from this period in the form of Platykotta akaina, the oldest known anomuran fossil (Chablais et al., 2011). Only the Chirostylidae and Eumunididae are represented in southern African waters.

FAMILY CHIROSTYLIDAE ORTMANN, 1892

AW

Uroptychus foulisi

Carapace, smooth, tuberculate or spinose, with no transverse striae, posterolateral border not defined or inflated; rostrum, varying in shape; supraocular spines absent. Eyes, well-developed. Antennule, basal segment with distolateral spines. Antenna, peduncle made up of 5 segments, acicle may be present or absent. Mandibles, cutting edge calcified and strongly serrated. Maxilliped 1, has no epipod, exopod flagellum may be present and not annulated or absent. Maxilliped 3, arthrobranchs may be vestigial or well-developed, but pereiopods 1 (P1) to P4, each with 2 arthrobranchs. P5 with only one arthrobranch. P2 to P4 with pleurobranch. Sternum, sternite 3 not strongly produced towards the anterior. Abdomen: anterolateral margin of somite 2 with no prominent anterolaterally directed spine; pleopods 1 and 2 present in males, but pleopods 3 to 5 may be vestigial to absent (Schnabel & Ahyong, 2010). Type genus, *Chirostylus*.

The chirostylids emerged during the Cretaceous some 95 Mya (Bracken-Grissom et al., 2013). MacPherson et al. (2005) showed the Hippidae as basal in the Anomura, followed by the Lithodidae-Haplogastridae; Aeglidae; and Kiwaiidae, Galatheidae, Chirostylidae-

Porcellanidae as sister groups. An analysis by McLaughlin et al. (2007) Pylochelidae, Coenobitidae, Diogenidae, Parapaguridaehad the Paguridae-Pyloiacquesidae in one clade, with Kiwaidae, Lomisidae and Chirostylidae, Galatheidae-Porcellanidae in one branch of another clade and the Aeglidae, Lithodidae-Hapalogastridae, Blepharipodidae and Albuneidae-Hippidae in another branch of this second clade Phylogenetically Tsang et al.'s (2008) molecular analysis placed the Anomura between the "Thalassinidea" and Brachvura. Bracken-Grissom et al. (2013) showed this family to have a high speciation rate: currently this family contains 7% of all anomuran species with many new species awaiting description. The chirostylids have a fossil record with the extinct genus Pristinaspina (De Grave et al., 2009; Schweitzer et al., 2010; Fossilworks). Pristinaspina gelasina was described from the Cretaceous, 140 Mya, of Alaska and seemed to die out around the start of the Palaeocene around 65 Mva (Schweitzer & Feldman, 2000a). This early occurrence of this family member along the North Pacific Rim suggests that this family could have had its origins there.

Chirostylids are a marine family of often small, inconspicuous shrimplike anomurans, which are found in a variety of habitats, from shallow subtidal reefs to the deep sea (Davie, 2002b) and even around hydrothermal vents. Superficially they resemble the galatheids, but generally occur in deeper shelf or slope waters. They are often associated with soft corals, antipatharians and gorgonians (Le Guilloux et al., 2010). Baba (1988) recognised 5 genera (Eumunida, Chirostylus, Gastroptychus, Pseudomunida and Uroptychus) and over 100 species worldwide, most of which occur in the Indo-West Pacific (Poore, 2004). However, in the newly defined chirostylid family the genera are limited to Chirostylus. Gastroptychus, Hapaloptyx, Uroptychodes and Uroptychus (Schnabel & Ahyong, 2010). Barnard (1950) gave two genera and species under the family Uroptychidae, namely Uroptychus nitidus and Hapaloptyx difficilis. Kensley (1981a) gave five species of Uroptychus (U. edwardi, U. foulisi, U. nitidus, U. simiae and U. undecimspinosa) and one species of Eumunida (E. picta) for southern African waters. Although U. nitidus is accepted by WoRMS, according to Baba et al. (2008) this is a new species and needs to be re-examined. Uroptychus edwardi is now synonymised with U. scambus, while U. insignis, U. nigricapillis and U. remotispinatus are new to the area (Baba et al., 2008). Eumunida picta has been moved from the chirostylids to the Eumunididae, and Hapaloptyx difficulis has been moved from the Uroptychidae (Stebbing, 1920; Barnard, 1950) and Incertae Sedis (Kensley, 1981a) into the Chirostylidae (Baba et al., 2008;

Schnabel & Ahyong, 2010), so currently there are 9 species of chirostylid in southern African waters (see checklist).

Chirostylids such as *Gastroptychus* have been observed to repeatedly oscillate their chelipeds from the surface of the deep water coral *Leiopathes* to their mouthparts and collect prey and detritus in their first maxillipeds, suggesting that they feed off these corals (Le Guilloux et al., 2010).

CHIROSTYLIDAE Uroptychus foulisi Kensley, 1977b

Synonymy. Nil (Baba, 2005).

Common Name. Nil.

Description. Carapace, triangular, with narrow front which rapidly diverges posteriorly, with maximum width about 0.75 of carapace length posteriorly roughly around level of P2, unarmed dorsally, wider than middorsal length (excluding rostrum), adorned with numerous fine, silky hairs and with numerous pits, rostrum reaching beyond eyestalks with an entire margin; anterolateral corner a forward projecting triangular spine, carapace sides with ridge-like tubercle anteriorly, a spinose tubercle midway followed by tubercles of decreasing size towards the posterior, supra-ocular spines absent. Sternum, with V-shaped margin and no median notch. Eyes, well developed, cornea, narrower than setose eyestalk.

Antennule, basal segment with crest and blunt at tip with a spine on each corner distally. Antenna, peduncle with 5 segments or articles and an antennal scale. Mandible, cutting edge calcified, strongly serrate, Maxilliped 1, no epipod. Third maxilliped, dactyl and propodus with a pad of setae, ischium finely denticulate on inner margin. Exopod of maxilliped 1 with flagellum. Mandible serrate. Chelipeds long and slender, with joint 5 elongated, cutting edge of dactyl finely denticulate with triangular tooth at proximal third of finger, finger and thumb half the length of the palm, carpus shorter than palm, outer surface with low tubercles, merus with spine on inner angle distally, the rest with scattered small tubercles, iscium with small spine ventrodistally and hook-like spine dorsodistally, with similar shaped spine on basis. Pereiopods: P2 as broad as P3, the dactyls curved, with 8 strong spines on ventral edge; P2–P4 with pleurobranch. The last thoracic somite is lacking. Abdomen, symmetrical and folded on itself: telson, fissured transversely and folded against preceding segments. In males, pleopods 1 and 2 are present, but pleopods 3-5 are vestigial (Kensley, 1977b; Baba, 1989, 2005; Baba et al., 2008; Schnabel & Ahyong, 2010). Size, 7.5mm CL (rostrum included), 6.9mm CW (male), 8.2mm CL, 7.9mm CW (female). Colour, pale pink. Type locality, off St Lucia, KZN, S Africa (Kensley, 1977b; Baba et al. 2008).

A well represented genus with 124 species world-wide, mainly from the Pacific Ocean (79 species), 36 from the Indian Ocean and 18 from the Atlantic (Baba et al., 2008). De Grave et al. (2009) gave 134 species for Uroptychus. Six species of Uroptychus are known from southern African waters: U. foulisi, U. nitidus (off KZN and East London; Kensley, 1977b, 1981a), U. remotispinatus (from off KZN and Mozambique Baba, 2005; Baba et al., 2008), U. scambus (=U. edwardi, caught off Port Edward at 900m, hence the specific name; Kensley, 1981b), U. simiae (off St Lucia, KZN) and U. undecimspinosus (off Richards Bay between 360-420m; see checklist). Uroptychus insignis is also known from the Prince Edward Islands (Baba et al., 2008). The joint MNHN-IOE Mainbaza Cruise off Mozambique has vielded another species, Uroptychus nigricapillis (Chan, pers. comm.), which was previously known from off Kenya (Baba, 2005), bringing the total to eight species. Uroptychus mauritius is found off Mauritius, while U. brevipes, U. crosnieri, U. crassor and U. longioculus occur off Madagascar. Uroptychus dentatus also occurs off E Africa (Baba et al., 2008).

Distribution. An endemic chirostylid, which is only known from off St Lucia, KZN, South Africa (Kensley, 1981a).

Zonation & Habitat. This small chirostylid occurs on the shelf in depths between 1000 and 1200m (Kensley, 1981a). Members of this family are generally associated with octocorallarian corals as commensals in deep water habitats (Baba, 1973).

Phylogeny. There do not appear to be any fossil species of Uroptychus (De Grave et al., 2008; Schweitzer et al., 2010). In their phylogeny of the decapods, Porter et al. (2005) showed that Uroptychus parvulus grouped with Munida subrugosa within the "Anomala", which branched off after the Brachvura and before the Achelata, "Thalassinidea" and Astacidea. Within the "Anomala" these authors had the Hippidae emerging basally, followed by the Lomisidae-Aeglidae, Lithodidae, and Chirostylidae-Galatheidae. This result placed the divergence between Uroptvchus and Munida over 200 Mya during the Triassic, with the deeper branching off of the Anomala during the Carboniferous around 320 Mva. Bracken et al. (2009a), researching the Decapod tree of life, found that Uroptvchus grouped with Eumunida in the Anomura, which was positioned after the Stenopodidea and "Thalassinidea", but before the Polychelidae, Astacidea and Brachvura-Achelata. Ahvong et al. (2009) thoroughly investigated Anomuran phylogeny using molecular methods and found that the Galatheidae-Porcellanidae formed one clade, with the Diogenidae-Coenobitidae, the Lepidopidae-Hippidae-Blepharipodidae and the remainder of the Anomura as sister groups. Within this "remainder" clade, the Pylochelidae emerged first, followed by the Paguridae-Lithodidae-Haplogastridae, Pylochelidae-Parapaguridae, Aeglidae, Lomisidae, Kiwaidae, Eumunididae and Chirostylidae. Uroptychus grouped with Gastroptychus and Chirostvlus within the Chirostvlidae, after having branched off from Eumunida. In this analysis, the Chirostylidae is excluded from the Galathoidea to warrant its own superfamily, which was subsequently published by Schnabel & Ahyong (2010) and Schnabel et al., (2011). These last three works show that the chirostylids have emerged independently of the galatheids-porcellanids, which differs from previous analyses, which have nested these three groups closely. Kiwa grouped within the Chirostylidae, so that the Kiwaidae could be incorporated into the Chirostylidae. Clark & Ng (2008) showed that the larval characters of Chirostylus are quite different from those of Galathea, while chirostylid sperm morphology is more closely akin to hermit crab sperm than to the galathoids (Tudge, 1997), so chirostylids could be closer to the nongalatheids than the galatheids or porcellanids (Ahyong, 2009). The internal relationships within the Anomura are still far from being settled, with polyphyly in the Pylochelidae, so some alliances will undoubtedly change

with future anomuran phylogenetic studies (Ahvong et al., 2009). Schnabel et al. (2011) found that the Anomura divided into two major clades, the second of which had the Hippoidea as basal, followed by a division into the Paguroidea on one hand, while on the other, the Lomisidae and Aeglidae branched off first, followed by the Kiwaidae and Chirostylidae, which included Eumunida, Gastroptychus, Uroptychus, Uroptychodes and Chirostylus. Eight species of chirostylid (Chirostylus novaecaledoniae, Gastroptychus novaezealandiae, G. rogeri, G. spinifer, Uroptychus nitidus, U. parvulus, U. scambus and U. spinirostris) were used in a molecular and morphological analysis of the Anomura by Bracken-Grissom et al. (2013) and the positioning of them differed according to methodology. Using molecular methods they grouped the Chirostyloidea in with the Kiwaidae and Eumunididae after the Galathoidea, but using combined molecular and morphological methods the chirostylids tested grouped in a clade which sequenced Aeglidae. Lomisidae, Eumuninidae, Kiwaidae, Chirosytlidae, with the Galathoidea as a sister clade. However, Gastroptychus and Uroptychus were found to be polyphyletic/paraphyletic.

Etymology. Uroptychus, Uro- Gr. oura, tail, -ptych Gr. ptych, a fold, in reference to the tail being folded under, -us, maculine suffix; *foulisi*, Kensley named this species for Captain George Foulis, Master of the CSIR Research Vessel *Meiring Naude*, which undertook numerous research cruises along the South African coastline.

FAMILY EUMUNIDIDAE A. MILNE-EDWARDS & BOUVIER, 1900

AW

Eumunida squamifera

Carapace, elongate, cordiform, with transverse striae, posterolateral margin not excavated, entire; rostrum, spiniform, with mesial and usually lateral supra-ocular spines, lateral supra-ocular spine well-developed in *Eumunida* and obsolete to minute in *Pseudomunida*; cervical groove distinct. Eyes, well-developed. Ocular peduncular basal segment obscured by rostral and supra-ocular spines dorsally. Anterior border of sternite 3 transversely sinuous to irregular and not strongly produced anteriorly. Antennules, basal article unarmed. Antennae, peduncle made up of 5 segments, with acicle present. Mandibles, cutting edge calcified, tridentate, with a tooth at each end and a single median tooth. Maxilliped 1, has well-developed epipod, and exopod flagellum is only annulated in distal part. Maxilliped 3 to pereiopod 4 (P4) with 2 arthrobranchs each, but vestigial on maxilliped 3. Pereiopods, P5 only has one arthrobranch, P2 to P4 with pleurobranchs. Abdomen, anterolateral margin of somite 2 has prominent anterolaterally directed spine. In males, pleopod 1 is missing,

pleopod 2 vestigial or missing, while pleopods 3 to 5 may be present or missing (Schnabel & Ahyong, 2010). Type genus, *Eumunida*, by monotypy.

This family has a fossil representative in *Eumunida pentacantha* from the Late Eocene of Hungary around 55 Mya (Schweitzer & Feldmann, 2000a; De Grave et al., 2009; Schweitzer et al., 2010). The eumunidids were given their own family in 1900 by Milne-Edwards & Bouvier, but it was not subsequently used, so they were part of the Chirostylidae (Kensley, 1981a; Davie, 2002b; Poore, 2004; Baba, 2005; Baba et al., 2008). Both Ahyong et al. (2009) and Schnabel et al. (2011) gave the chirostylid clade (Kiwa, Eumunida and Pseudomunida) which was paraphyletic outside a "Dypticiens" clade, but while Eumunida was strongly supported, Kiwa and Pseudomunida were ambiguous. Although Pseudomunida was not analysed, both Chu et al. (2009) and Tsang et al. (2011) found good support for a Eumunida plus Kiwa clade which was sister to the main chirostylid clade. Thus, the Chirostylidae sensu lato were not monophyletic, with the old "Eumunidiens" group closer to the Kiwaidae than the other chirostylids. Thus Schnabel & Ahyong (2010) reinstated the eumunidids to family status for the two genera Eumunida and Pseudomunida (Schnabel et al., 2011).

Presently there is only one eumunidid species in southern African waters, *Eumunida squamifera* (=*E. picta*) from off Namibia (Kensley, 1981a; de Saint Laurent & Macpherson, 1990; Macpherson, 1991; Baba et al., 2008). Squat lobsters in general feed on algae, deposits, particulate organic matter and suspensions, as well as being scavengers and predators (Loverich & Thiel, 2011), but *Eumunida picta*, which occurs in the N Atlantic, is a mesopelagic omnivore, feeding on diatoms, radiolarians, foraminiferans, particulate organic matter, marine snow, copepods, euphausiids, chaetognaths and small fish (Quattrini et al., 2012).

EUMUNIDIDAE Eumunida squamifera de Saint Laurent & Macpherson, 1990

Synonymy. Eumunida picta (Kensley, 1980b; de Saint Laurent & Macpherson, 1990; Baba et al., 2008).

Common Name. Squat lobster.

Description. The body is shrimp-like. Carapace, about as long as wide with tapered front leading to the rostrum, which projects 0.75 the way to the tips of the maxilliped 3; three anterolateral spines on each side of the carapace, with the first as long as supraorbital external spine; the lateral and mesial supra-ocular spines (two pairs) are well developed; 5 pairs of lateral spines on posterior carapace decreasing in size with small spinules between; 3 pairs of hepatic spines in an oblique row, hepatic spine 1 is half the size of the external supraorbital spine; posterior carapace has raised striations, with 6 main, transverse striations, interrupted, with segments of variable lengths in the median zone and in short semicircles laterally. Antennular peduncles, extend past antennal peduncle extremities. Antennal peduncles, reach close to external supraorbital spines, antennal flagella long and slender, antennal scale, scaphocerite present, reaches mid-article 2. Maxilliped 3, has short spine on distal third of mesial merus border. Mandible, smooth to feebly dentate on incisor margin. No sternal plate on last thoracic somite. Chelipeds, elongate and slender, 3.7 times CL, the arms, especially the inner surfaces, with numerous sharp spines,

the hand upper surfaces with 2 longitudinal lines of spines, 10–12 mesiodorsal spines and 5–6 mesioventral ones. Pereiopods, elongated, possess spinose meri and carpi on leading edges, but last joints including the dactyls without spines. Abdomen, telson with transverse suture and folds beneath the preceding abdominal somites with the tail fan. Easily recognised by the combination of 5 rostral and supra-ocular spines and oblique rows of 3 spines prior to these (de Saint Laurent & Macpherson, 1990; Poore, 2004). *Size*, not known, but *E. australis* reaches 25mm CL (Poore, 2004). *Colour*, adults, bright orange, lateral carapace spines more pinkish, sternum and dorsal abdomen whitish, legs, orange dorsally, colour more pronounced at base of spines, legs and anterior abdomen lighter in colour. *Type locality*, Tripp Seamount, S Namibia, 152–390m (Baba et al., 2008).

This species was originally thought to belong to *Eumunida picta* (Kensley 1980b, 1981a), but de Saint Laurent & Macpherson (1990) separated it as a new species. A total of 28 species of *Eumunida* are known in the world, with most (23) coming from the Pacific, followed by three from the Indian Ocean and three from the Atlantic (Baba et al., 2008). This species can be distinguished from *E. bella* by the scaley striations on the carapace. This closely related species from off NW Africa is also closely related to the typical western Atlantic form, *E. picta. Euminida bispinata* and *E. similior* are known from Madagascar (Baba, 2005).

Distribution. A relatively large chirostylid with a restricted distribution from S Namibia to off the mouth of the Orange River, NW Cape (de Saint Laurent & Macpherson, 1990).

Zonation & Habitat. This squat lobster occurs in a depth zone on the shelf varying from 152 to 390m (de Saint Laurent & Macpherson, 1990; Baba et al., 2008), while Kensley (1980b, 1981a) recorded it from 800m off Lüderitz and over the seamount Tripp. Decapod community structure research of Namibia by Macpherson (1991) showed that *E. squamifera* was found on the southern slope between 300 and 500m. *Eumunida picta* lives over soft bottoms in which it can burrow, so this species could have similar habits. *E. picta* has also occasionally been found as a vagrant in cold-seep sites on the Louisiana Slope, USA (Cheveldonne & Olu, 1996), and has also been associated with deep water corals (Le Guilloux et al., 2010).

Although not much is known on the ecology of *E. squamifera*, the closely related species *E. picta* is quite well known and is also often associated with deep water gorgonians. Off Nova Scotia, Canada, it occurs

on the gorgonians *Primnoa resedaeformis* and *Paragorgonia arborea* (Buhl-Mortensen & Mortensen, 2004; Metaxas & Davis, 2005). This species is also a conspicuous and dominant megafaunal associate of the *Lophelia pertusa* reefs on the mid-continental slope (300–700m) off N Carolina on the SE coast of the USA (Nizinski et al., 2004).

This species probably has lots of small eggs as work on *E. picta* from the Middle Atlantic Bight has shown that females produce large numbers of small dispersive eggs (producing planktotrophic larvae), compared with *Munida* or *Munidopsis* which produce a few large eggs with lecithotrophic larvae (Wenner, 1982).

Phylogeny. Tudge (1997), investigating the phylogeny of the Anomura found that spermatologically Eumunida was more closely related to the paguroids than the galatheoids and could represent a link between these two superfamilies. In a graphic representation of galatheoid phylogeny. Schweitzer & Feldmann (2000a) showed that Eumunida branched off from the Galatheidae sensu stricto around 200 Mya before branching off from the Munididae spp. during the Upper Cretaceous around 80 Mya. Ahyong & O'Meally (2004) found that Eumunida nested with Petrolisthes in the Anomura, with Munida branching off earlier. However, Ahyong et al. (2009) later found that *Eumunida* nested with the Chirostylidae between Pseudomunida and Uroptychus-Gastroptychus-Chirostylus. Both Machordom & Macpherson (2004) and Cabezas et al. (2008) found that Eumunida sternomaculata was basal in their analyses. Using combined data Bracken et al. (2009a) showed Eumunida nested with Petrolisthes, with Pvlocheles and Munida having branched off first. Using molecular data Ahvong et al. (2009) found that in the Kiwaidae-Chirostylidae clade. Pseudomunida was basal, followed by Kiwa, Eumunida, Chirostvlus, Gastropthychus and finally Uropthychus. As Kiwa nested within the Chirostylidae, this questioned the validity of the Kiwaidae. Both Kiwa and the chirostylids have lost the last thoracic sternite, which was originally interpreted as parallelism (MacPherson et al., 2005; McLaughlin et al., 2007), but is now regarded as a synapomorphy. The chirostylids could be closer to the non-galatheids as the larval characters of Chirostvlus are different from that of galathea, and chirostylid sperm is more like that of hermit crabs than of galatheoids (Tudge, 1997; Ahyong et al., 2009). Tsang et al. (2011) found that Eumunida funambulus nested with Kiwa hirsuta, with Uroptychodes grandirostris more basal, while Toon et al. (2009) similarly found E. funambulus emerging with Kiwa hirsuta, after Pomatocheles, Munidopsis, Lomis and Aegla.

Etymology. Eu- Gr. *eu-* prefix for true, *-munida*, a galatheid genus, L. *munitas*, armed, as members of this genus are usually well armed with spines; *squamifera*, L. *squamus*, pavement, *ferus*, to carry, i.e., named for its pavement-like ornamentation of the dorsal carapace (de Saint Laurent & Macpherson, 1990).