The Urban Environmental Crisis in India

The Urban Environmental Crisis in India:

New Initiatives in Safe Water and Waste Management

Edited by

Shyamli Singh, Radha Goyal and Ashish Jain

Cambridge Scholars Publishing

The Urban Environmental Crisis in India: New Initiatives in Safe Water and Waste Management

Edited by Shyamli Singh, Radha Goyal and Ashish Jain

This book first published 2017

Cambridge Scholars Publishing

Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

Copyright @ 2017 by Shyamli Singh, Radha Goyal, Ashish Jain and contributors

All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

ISBN (10): 1-4438-7960-6 ISBN (13): 978-1-4438-7960-6

TABLE OF CONTENTS

List of Tablesviii
List of Figuresx
Abbreviationsxiv
Forewordxx
Preface xxii
Acknowledgmentxxiii
Introduction xxiv
Authors' Affiliation xxv
Chapter One
Chapter Two
Chapter Three
Chapter Four
Chapter Five

Chapter Six
Chapter Seven
Chapter Eight
Chapter Nine
Chapter Ten
Chapter Eleven
Chapter Twelve
Chapter Thirteen

Chapter Fourteen	31
Characterization of Trace Gases and Bioaerosols in and around	
the Okhla MSW Landfill Site in Delhi, India	
S. Agarwal, Papiya Mandal and M.K. Chaturvedi	
Chapter Fifteen	46
Gas Recovery from Sanitary Landfill at Ghazipur for use as CNG/Power Pradeep Kumar Khandelwal	
Chapter Sixteen	63
Conservation and Recharge Schemes in a Water-Stressed Region	
of Central Ganga Alluvial Plain, India	
Venkatesh Dutta, Karunesh K Shukla and Alok Rai	
Chapter Seventeen	86
Spatial Variation of Yamuna River Water Quality in India	
Papiya Mandal and Rahul Upadhyay	
Chapter Eighteen	10
Solid Waste Management and Groundwater Pollution:	
Assessment of Heavy Metals Contamination due to Leachates in Active and Closed Municipal Solid Waste Dumping Sites of a North Indian City K. Archana and Venkatesh Dutta	
Contributors' Profiles 3	34

LIST OF TABLES

Table 3.1: Plastic Waste Generation in Major Cities	. 32
Table 3.2: Percentage of Classified Plastic Waste	. 35
Table 4.1: The Treatment Process for Different E-Wastes	. 49
Table 5.1: Few Regional SWM Projects in India	
Table 6.1: MSW Generation in Different States in India	. 67
Table 6.2: Breakdown of Solid Wastes and its Sources	. 68
Table 6.3: Comparison of the Major MSW Management Technology	
Options: Landfilling, Composting, and Incineration	. 76
Table 6.4: Comparison of Typical Solid Waste Management Practices	. 84
Table 7.1: Composition of Solid Waste at Dump Yard of Urban Cities	. 92
Table 7.2: Solid Waste Management System in Delhi	. 94
Table 8.1: Composition of MSW Generated in the Study Areas	110
Table 8.2: Proximate Analysis of MSW	110
Table 8.3: Ultimate Analysis of MSW	111
Table 8.4: Comparison of the Results from the Study Areas	125
Table 9.1: Details of Population and Waste Generated	
in Megacities in 2000 -2011	131
Table 9.2: Waste Composition of India during 1971 and 2005	132
Table 9.3: Waste Composition of Mega Cities during 1971 and 2008	133
Table 9.4: MSW Management Technologies and their Suitability	136
Table 9.5: Operating Incineration Plants	144
Table 9.6: Types of Plastic, their Usage and Recycling Value	146
Table 9.7: Suitability of Paper for Recycling	148
Table 11.1: Different Categories and Sources of Solid Wastes	164
Table 11.2: Solid Waste Generation and Treatment Facilities in India	165
Table 11.3: Solid Waste Generation and Processing in Mumbai	
Metropolitan Region	167
Table 11.4: MSW Plants constructed in Mumbai with Nisarguna	
Technology	171
Table 12.1: Sources and Sinks for GHG Emissions from Waste	
Management Activities	
Table 13.1: Type of PM, their Contaminants and Sources from Waste	212
Table 13.2: Concentration of Criteria Air Pollutants at two	
SWM Facilities in Delhi City	213
Table 13.3: Air Pollutants from Solid Waste Management Practices	
and their Environmental and Public Health Effects	218

Table 14.1: The Salient Features of Landfill Sites of Delhi	. 231
Table 16.1: Site Selection Criteria for Artificial Recharge Structures	. 266
Table 16.2: Land Use/Land Cover and their Area (Ha) in Bhitargaon	
Block of Kanpur District	. 269
Table 16.3: Wasteland and their Tentative Areas Mapped from	
Resourcesat-2 LISS III Satellite Data	. 270
Table 16.4: Pre-Monsoon Groundwater Status	
of Bhitargaon Block (2014) Data	. 273
Table 17.1: National Sanitation Foundation Water Quality Index	
Table 17.2: Water Quality Legends	. 290
Table 17.3: Designated Best use Classification of Surface Water	
Table 17.4: Spatial Variation of Yamuna River Water Quality	
Index (2009-2012)	. 298
Table 18.1: Various Dumping Sites, Waste Disposal Methods	
and Depth of Waste Dump	. 317
Table 18.2: The Pre- and Post-Monsoon Season Concentrations	
of Heavy Metals (Mean ± SD, N=3) in Leachate of Different	
MSW Dumping Sites of Lucknow City	. 317
Table 18.3: Mean Variation in the Concentration of Different Physico-	
Chemical and Biological Parameters of Groundwater for Varying	
Distance from the Landfill Sites in Pre-Monsoon Season	. 326
Table 18.4: Mean Variation in the Concentration of Different	
Physico- Chemical and Biological Parameters of Groundwater for	
Varying Distance from the Landfill Sites in Post-Monsoon Season.	. 327

LIST OF FIGURES

Figure 1.1: MSW Generation Rate in Urban Population	3
Figure 1.2: Circular Economy Model	
Figure 2.1: Analytic (Reductionist) Model	
Figure 2.2: Systems Thinking Relative to Reductionist Approaches	
in Understanding the Informal Solid Waste Sector	19
Figure 2.3: Iceberg Model Approach to Natural	
and Human Designed Systems	19
Figure 3.1: Existing Collection and Transportation of MSW	
and Plastic Waste in India	28
Figure 3.2: Methodology Used for the Study	31
Figure 3.3: Percentage of Classified Plastic Waste	35
Figure 6.1: Per Capita Generation Rate of MSW for Indian Cities	
Figure 6.2: Existing MSW Management System in India	
Figure 6.3: Agricultural / Animal Waste Thermochemical	
Treatment Overview	81
Figure 6.4: Lignocellulosic Biorefinery Feedstock	82
Figure 6.5: Selected Feedstock and Process Alternatives	84
Figure 8.1: Composition of MSW in Developed	
and Developing Countries	109
Figure 8.2: Tanner diagram	112
Figure 8.3: System and its Boundary for Mass Balance	117
Figure 9.1: Quantity of Waste Generated and Waste Dumped	
in Landfills	135
Figure 9.2: Percentage Share of Various Waste Management	
Technologies in European Countries in 2004	139
Figure 9.3: Percentage Share of Various Waste Management	
Technologies in European Countries in 2014	
Figure 9.4: Percentage of Plastic Waste for Year 2010-2011	141
Figure 11.1: Municipal Corporations and Councils under Mumbai	
Metropolitan Region	
Figure 11.2: Approach for Integrated Solid Waste Management	174
Figure 12.1: Status of Waste Disposal Practices in some Cities	
of Developing Countries	196
Figure 12.2: Municipal Solid Waste Management activities	
as Source of GHG Emissions and GHG Saving	198

Figure 13.1: Health Effects of Air Pollutants released	
•	210
Figure 13.2: Occurrence of Incidence of Tested Diseases in Waste	
Pickers, Municipal Staff and on Control Population in Kolkata	. 222
Figure 14.1: Location of Air Quality Sampling Stations	
and Metrological Condition in November, 2008	233
Figure 14.2: Average Concentrations of NH ₃ around the	
Okhla Landfill Location in Delhi	236
Figure 14.3: Average Concentrations of H ₂ S around the	
Okhla Landfill Location in Delhi	236
Figure 14.4: Average Concentrations of CH ₄ around the	
Okhla Landfill Location in Delhi	237
Figure 14.5: Fungal Isolates on Malt Extract Agar Plates and their	
Microscopic Images after Lacto Phenol Cotton Blue Staining	. 239
Figure 14.6: Bacterial Isolates on Nutrient Agar Plates and their	
Microscopic Images after Gram Staining	
Figure 15.1: Satellite Image of Pilot Project Area	246
Figure 15.2: The Sequence of Laying of Surface Liners is Indicated	248
Figure 15.3: Installation of Liner System with Plain Paver Blocks	249
Figure 15.4: Installation of Liner System with Installation	
of Grass Paver Blocks	
Figure 15.5: Installation of Liner System with Geo Cell	
Figure 15.6: Cross Section of LFG Well	
Figure 15.7: Flare System Installation	
Figure 15.8: Methane Quality & Quantity W.R.T. Time	
Figure 15.9: Daily Average LFG flowrate in May-2013	
Figure 15.10: Daily Average CH ₄ Vol% in May-2013	
Figure 15.11: Daily Average Yield of CH ₄ (m ³ /hr) in May-2013	
Figure 15.12: Daily Average LFG flowrate in June-2013	
Figure 15.13: Daily Average CH ₄ Vol% in June-2013	
Figure 15.14: Daily Average Yield of CH ₄ (m ³ /hr) in June-2013	
Figure 15.15: Daily Average Flowrate of LFG in July-2013	
Figure 15.16: Daily Average CH ₄ Vol% in July-2013	
Figure 15.17: Daily Average Yield of CH ₄ (m ³ /hr) in July-2013	. 259
Figure 16.1: Location Map of Bhitargaon Block, Kanpur District,	
Uttar Pradesh	265
Figure 16.2: Schematic Representation of Methodology used for	
Identification of Artificial Recharge Sites in the Study Area	267
Figure 16.3: Hydrograph Stations and their Location	
in the Study Area	268

Figure 16.4: Slope Profile of Bhitargaon Block, Kanpur District,
Uttar Pradesh
Figure 16.5: Wasteland and Waterlogged Areas of Bhitargaon Block 270
Figure 16.6: Drainage, Water bodies and Canals of Bhitargaon Block 271
Figure 16.7: Pre Monsoon Ground Water Level Zone
of Bhitargaon Block
Figure 16.8: Post Monsoon Ground Water Level Zone
of Bhitargaon Block273
Figure 16.9: Proposed Work for Groundwater Recharge
in Bhitargaon Block
Figure 17.1: Sampling Location of River Yamuna (2009-2012) 288
Figure 17.2: Spatial Variation of Temperature of Yamuna River
Selected Locations (2009-2012)
Figure 17.3: Spatial Variation of pH of Yamuna River Selected
Locations (2009-2012)
Figure 17.4: Spatial Variation of Conductivity of Yamuna River
Selected Locations (2009-2012)
Figure 17.5: Spatial Variation of DO of Yamuna River Selected
Locations (2009-2012)
Figure 17.6: Spatial Variation of BOD of Yamuna River Selected
Locations (2009-2012)
Figure 17.7: Spatial Variation of Total Coliform of Yamuna River
Selected Locations (2009-2012)
Figure 17.8: Spatial Variation of Fecal Coliform of Yamuna River
Selected Locations (2009-2012)
Figure 17.9: Framework for Sustainable Yamuna River Water
Management
Figure 18.1: Location of four Dumping Sites and the 5 Km Buffer
Area for Groundwater Quality Monitoring
Figure 18.2: Composition of Municipal Solid Waste in Lucknow 312
Figure 18.3: Income Wise Sample Population and their Per Capita
Waste Generation (Grams/Capita/Day) in Lucknow
Figure 18.4: Concentration of Zinc (Zn) in Pre and Post-Monsoon
Seasons in Leachate of different MSW Dumping Sites
of Lucknow City
Figure 18.5: Concentration of Copper (Cu) in Pre and
Post-Monsoon Seasons in Leachate of different MSW
Dumping Sites of Lucknow City
Figure 18.6: Concentration of Nickel (Ni) in Pre and
Post-Monsoon Seasons in Leachate of different MSW
Dumping Sites of Lucknow City

Figure 18.7: Concentration of Cadmium (Cd) in Pre and	
Post-Monsoon Seasons in Leachate of different MSW	
Dumping Sites of Lucknow City	320
Figure 18.8: Concentration of Lead (Pb) in Pre and	
Post-Monsoon Seasons in Leachate of different MSW	
Dumping Sites of Lucknow City	321
Figure 18.9: Concentration of Chromium (Cr) in Pre and	
Post-Monsoon Seasons in Leachate of different MSW	
Dumping Sites of Lucknow City	321

ABBREVIATIONS

ABPA	Allergic Broncho Pulmonary Aspergillosis
AFR	Alternative Fuels and Raw Materials
Al_2O_3	Aluminium Oxide
ALMP	Advanced Locality Management Program
AMC	Allahabad Municipal Council
AMRUT	Atal Mission for Rejuvenation and Urban Transformation
APC	Air Pollution Control
APHA	American Public Health Association
As	Arsenic
As_2O_3	Arsenic Oxide
AWWA-	American Water Works Association- Water Pollution
WPCF	Control Federation
BARC	Bhabha Atomic Research Centre
BBMP	Bruhat Bengaluru Mahanagara Palika
BIMA	Biogas Induced Mixing Arrangement.
BMC	Brihanmumbai Municipal Corporation
BMW	Biomedical Wastes
BOD	Biochemical Oxygen Demand
BPA	Bisphenol A
BREF	Bat (Best Available Techniques) Reference Document
BT	Bio-technology
BTEX	Benzene Toluene Ethylene and Xylene
BTU	British Thermal Unit
C&D	Construction and Demolition
Ca	Calcium
CAB	Culturable Airborne Bacteria
CaCO ₃	Calcium Carbonate
CAF	Culturable Airborne Fungus
CAGR	Compounded Annual Growth Rate
CaO	Calicum Oxide
CBOs	Community Based Organisations
CCMEWQI	Canadian Council of Ministers of the Environment Water
	Quality Index
CCS	Carbon Capture and Storage

Cd	Cadmium
CdCl ₂	Cadmium Chloride
CEA	Central Electricity Authority
CETP	Common Effluent Treatment Plant
CFC	Chloro Fluoro Carbon
CGWB	Central Ground Water Board
CH ₄	Methane
CIPET	Central Institute of Plastics Engineering and Technology
Cl	Chlorine
CNG	Compressed Natural Gas
СО	Carbon Monoxide
Со	Cobalt
CO ₂	Carbon Dioxide
COD	Chemical Oxygen Demand
Cp	Specific Heat Content
CPCB	Central Pollution Control Board
CPHEEO	Central Public Health and Environmental Engineering
	Organisation
Cr	Chromium
CRRI	Central Road Research Institute
CSIR	Council of Scientific and Industrial Research
CSIR-	Council of Scientific and Industrial Research- National
NEERI	Environmental Engineering Research Institute
Cu	Copper
DCB	Delhi Cantonment Board
DISHA	Direct Initiative for Social and Health Action
DO	Dissolved Oxygen
DRANCO	Dry Anaerobic Composting
DSC	Differential Scanning Calorimeter
DST	Department of Science & Technology
DTDC	Door-to-Door Waste Collection
EC	Electrical Conductivity
EDMC	East Delhi Municipal Corporation
EM	Effective Micro-Organisms
EPA	Environment Protection Agency
EPC	Engineering Procurement Construction
EPR	Extended Producer Responsibility
EU	European Union
E-waste	Electronic Waste
F	Fluorine

FB	Field Blanks
FC	Fecal Coliform
Fe ₂ O ₃	Ferric Oxide
FICCI	Federation of Indian Chambers of Commerce and Industry
FID	Flame Ionization Detector
FMCG	Fast Moving Consumer Goods
GAP	Ganga Action Plain
GDP	Gross Domestic Product
GHG	Green House Gas
GIBCO	Grand Island Biological Company
GIS	Geographical Information System
GoI	Government of India
GOI-CGWB	Government of India- Central Ground Water Board
GPS	Global Positioning System
GUDC	Gujarat Urban Development Corporation
GW	Gigawatt
H ₂ S	Hydrogen Sulphide
HAP	Hazardous Air Pollutant
HC	Hydro Carbon
HCl	Hydro Chloride
HDPE	High-Density Polyethylene
Hg	Mercury
HHV	Higher Heating Value
HW	Hazardous Waste
IARI	Indian Agriculture Research Institute
IAWG	International Ash Working Group
ICPE	Indian Centre for Plastics in the Environment
IEA	International Energy Agency
IGT	Institute of Gas Technology
IIT	Indian Institutes of Technology
IMSD	Integrated Mission for Sustainable Development
INR	Indian Rupee
IPCA	Indian Pollution Control Association
IPCC	Intergovernmental Panel on Climate Change
IPMA	International Project Management Association
IRC	Indian Road Congress
ISWM	Integrated Solid Waste Management
ISWMS	Integrated Municipal Solid Waste Management System
ITCC	Indian Type Culture Collection
IW	Industrial Waste

JBIC	Japan Bank of International Cooperation	
JICA	Japan International Cooperation Agency	
JITF	Jindal Infrastructure Transport and Fabrication	
JNNURM	Jawaharlal Nehru National Urban Renewal Mission	
KMDA	Kolkata Metropolitan Development Authority	
KNIDA	Key Performance Indicators	
LB	Laboratory Blanks	
LCA	Life Cycle Assessment	
LCDs		
LDPE	Liquid Crystal Displays	
	Low-Density Polyethylene	
LFG	Landfill Gas	
LMC	Lucknow Municipal Corporation	
LPG	Liquid Petroleum Gas	
MAR	Managed Aquifer Recharge	
mbgl	Meters Below Ground Level	
MCD	Municipal Corporations of Delhi	
MCGM	Municipal Corporation of Greater Mumbai	
MEA	Malt Extract Agar	
MFA	Material Flow Analysis	
Mg	Magnesium	
$MgCO_3$	Magnesium Carbonate	
MgO	Magnesium Oxide	
MLD	Million Litres Per Day	
MMC	Maharashtra Municipal Corporation	
MMR	Mumbai Metropolitan Region	
Mn	Manganese	
MNRE	Ministry of New and Renewable Energy	
MoEF	Ministry of Environment and Forests	
MoEFCC	Ministry of Environment Forests and Climate Change	
MoUD	Ministry of Urban Development	
MPCB	Maharashtra Pollution Control Board	
MPN	Most Probable Number	
MSW	Municipal Solid Waste	
MSWM	Municipal Solid Waste Management	
MT	Metric Ton	
MTPD	Metric Ton Per Day	
MTPY	Million Ton Per Year	
MW	Municipal Waste	
MWh	Mega Watt Hour	
NA	Nutrient Agar	
- 12 -	1.00000011500	

xviii Abbreviations

774 4 0 0		
NAAQS	National Ambient Air Quality Standards	
NAAQMP	National Ambient Air Quality Monitoring Programme	
NDMC	New Delhi Municipal Council	
NEERI	National Environmental Engineering Research	
NERI	Navreet Energy Research and Information	
NGO	Non-Government Organization	
NGT	National Green Tribunal	
NH_3	Ammonia	
NH-8	National Highway-8	
Ni	Nickel	
NIMBY	Not In My Backyard	
NMMC	Navi Mumbai Municipal Corporation	
NMOC	Non-Methane Organic Compounds	
NOAA	National Oceanic and Atmospheric Administration	
NOx	Oxides of Nitrogen	
NO_2	Nitrogen Dioxide	
NRCD	National River Conservation Directorate	
NSF	National Sanitation Foundation	
NSFWQI	National Sanitation Foundation Water Quality Index	
NUSP	National Urban Sanitation Policy	
NWDMC	National Water Demand Management Centre	
O_2	Oxygen	
O_3	Ozone	
ODS	Ozone Depleting Substances	
OECD	Organisation for Economic Co-operation and Development	
OFMSW	Organic Fraction of Municipal Solid Waste	
OUIDF	Odisha Urban Infrastructure Development Fund	
OWQI	Oregon Water Quality Index	
PAH	Polycyclic Aromatic Hydrocarbon	
Pb	Lead	
PbCl ₂	Lead Chloride	
PCB	Polychlorinated Biphenyl	
PCDD	Polychlorinated Dibenzo-P-Dioxins	
PCDF	Polychlorinated Dibenzo Furans	
PCP	Pentachlorophenol	
PE	Population Equivalent	
PET	Polyethylene Terephthalate	
PM	Particulate Matter	
PMC	Pune Municipal Corporation	
PP	Polypropylene	
	1 organismo	

PPP Public Private Partnership PPT Plasma Pyrolysis Technology PS Poly Styrene PTFE Poly Tetra Fluoro Ethylene	
PS Poly Styrene	
1 11 E 1 OIY TOURT INOIO EMITTENE	
PVC Poly Vinyl Chloride	
PW Plastic Waste	
PWM Plastic Waste Management	
R&D Research and Development	
RCC Reinforced Concrete Cement	
RDF Refuse Derived Fuel	
RWA Resident Welfare Association	
SA System Administrator	
Sb Strontium	
SBM Swachh Bharat Mission	
SDMC Systems Director Management Console	
SGPI Sanjay Gandhi Postgraduate Institute of Medical Science	
SiO ₂ Silicon di- Oxide	3,
SLF Sanitary Landfill	
SO ₂ Sulphur Di Oxide	
SO ₄ Sulphate	
SO _X Oxides of Sulphur	
SPM Suspended Particulate Matter	
STPs Sewage Treatment Plants	
SW Solid Waste	
SWM Solid Waste Management	
SWOT Strength Weakness Opportunities and Threat	
TC Total Coliform	
TCLP Toxicity Characteristic Leaching Procedure	
TDS Total Dissolved Solid	
TEQ Toxicity Equivalency Quantity	
TERI The Energy Research Institute	
TGA Thermo-Gravimetric Analyser	
Th Thalium	
TIFAC Technology Information, Forecasting and Assessment	
Council	
TIFR Tata Institute of Fundamental Research	
Th Thorium	
ToC Total Organic Carbon	
TOWMCL Timarpur - Okhla Waste Management Company Limited	
TPD Ton Per Day	

TSDF	Treatment Storage and Disposal Facilities
TSPM	Total Suspended Particulate Matter
TSS	Total Suspended Solid
UP	Uttar Pradesh
UFPM	Ultra Fine Particulate Matter
UK	United Kingdom
ULBs	Urban Local Bodies
UN	United Nations
UNEP	United Nations Environment Programme
UNFCC	United Nations Framework Convention on Climate Change
US	United States
USA	United States of America
USD	United State Dollar
USDOE	United States Department of Energy
USEIA	United State Environmental Impact Assessment
USEPA	United State Environment Protection Agency
USFA	United State Fire Administration
V	Vanadium
VFA	Volatile Fatty Acid
VMCH	Vinyl Acetate - Maleic Acid - Vinyl Chloride
VOCs	Volatile Organic Compounds
W2E	Waste to Energy
WAWQI	Weight Arithmetic Water Quality Index
WHO	World Health Organization
WLO	Waste Lubricating Oil
WPs	Waste Pickers
WQI	Water Quality Index
WRI	Western Research Institute
WTE	Waste To Energy
YAP	Yamuna Action Plan
Zn	Zinc
ZnCl ₂	Zinc Chloride

FOREWORD

It is my immense pleasure to introduce this valued and timely edition highlighting the concerns of solid waste and wastewater management, with special emphasis on the urban locale in the Indian context. *Albeit*, several publications are available dealing with an assortment of themes in solid waste management, the emphasis of those is largely on the issues and needs of industrialized nations. A very few books have been specifically authored to provide the nature of information that is vital for those in the developing countries.

I extend my heartiest congratulations to all the esteemed authors who have contributed their expertise to present the valuable information about the current crisis of solid waste in urban India, its policy framework and initiatives taken so far for its sustainable management. The book attempts to identify the lacunae in new initiatives embarked upon in terms of technologies, policies and regulations to alleviate the water and waste problem faced in the metropolitan cities of India. The book has an added flavor of practical solutions, discussed for professionals in India as well as other developing countries. The book has been primed for decision-makers, policy makers, researchers, academicians and professionals involved in the management of solid wastes, air pollution, river water and ground water quality.

I hope this book will prove to be a valuable and important source of information to provide remedial solutions to the ever increasing problem of waste and water management in India and other developing countries.

Dr. Rakesh Kumar Director, CSIR- NEERI

PREFACE

The edited book, "The Urban Environmental Crisis in India: New Initiatives in Safe Water and Waste Management" by Cambridge Scholars Publishing is motivated by the urgency of furthering the adoption of safe water and waste management practices in India. The management of solid waste is a national crisis. The number of available landfills is decreasing, the health risks associated with waste incineration are of great concern and the growing public / NIMBY opposition to siting new waste management facilities is a growing problem especially for urban local authorities. There is need for policy intervention in an inclusive productionconsumption- recovery pattern of waste management in India. The book tries to present a full picture of the state-of-the-art research and development of actionable knowledge discovery in new initiatives in safe water, waste management and applications. The inception of the book was triggered by applications of real-world challenges and complexities. Although there has already been a lot of documentation in this huge public services breakdown zone, there is no calling a halt to more information dissemination especially for validating business related use. There seems to be a gap between academia and businesses and between academic research and ground realities in the context of popularizing waste management. This book is an attempt to address the ubiquitous challenges and complexities from a real-world perspective. It features new methodological, technical and practical progress in promoting initiatives. It presents recent developments and discoveries in solid waste management practice and its associated risks of air, water and soil pollution to stimulate more research and to rapidly pass on such discoveries to the community. This is an up-to date collection of scientific contributions written by specialists in various areas of policy, waste management and safe water for both practitioners and for the research community.

The intended clients would likely be researchers, research students, policy makers, academia and decision makers. The book should also interest industry in working on sustainable development, solid waste management and related areas. It provides a coherent view of the state of the art and practice to enable developers and managers with technical and organizational approaches.

Dr. Tishyarakshit Chatterjee,

Director, IIPA, Former Secretary, M/o Environment & Forests, GoI

ACKNOWLEDGEMENT

This prestigious project of editing a book entitled "The Urban Environmental Crisis in India: New Initiatives in Safe Water and Waste Management" was successful due to assistance received and time devoted by many prestigious personalities. Words are inadequate to convey the appreciation for all the help provided by them. First, our sincere gratitude goes to the chapters' authors who contributed their time and expertise to this book. Without their support, this book would not have become a reality; which may prove to be a great asset to the community.

With token of responsibility, the editors are indebted to India Development Service (IDS) and University of Wisconsin Whitewater (UoWW), Chicago, USA for their valuable support.

Special thanks to Shri T. Chatterjee, Director, Indian Institute of Public Administration (IIPA) and to Dr. Rakesh Kumar, Director, CSIR-National Environmental Engineering Research Institute (CSIR- NEERI) for their incomparable guidance and support which inspired the pace of the project.

We are extremely grateful to the Administration Department, Finance & Accounts Department, Photocopy Department, and the Consumer Centre of IIPA and Indian Pollution Control Association (IPCA) for uniting the necessary facilities, and investing their time and efforts as and when required in the process of editing the book. We would like to extend our deep thanks to Dr. Lolita Pradhan, Research Officer at IPCA for her dedicated support and assistance in completing this project. We would also thank Mr. Ajay Garg, Secretary, IPCA for his constant motivation and support.

Editors' humble duty of acknowledging everyone would fail if we miss to thank the Cambridge Scholars Publishing Newcastle upon Tyne, United Kingdom without their support and assistance the book would not have seen the light of the day.

Last but not the least the Editors express their sincere and heartfelt thanks to the Almighty for providing them good health and peace of mind which facilitated in producing the edition. The editors sincerely pray and wish to the Divine for many more such endeavors.

INTRODUCTION

At the dawn of the new millennium, 300 million Indians lived in the country's nearly 3700 towns and cities, in sharp contrast to only 60 million in 1947 when the country became independent. Estimates show that by 2045 nearly 800 million Indians will be living in the country's cities—more than the total population of the whole of present-day Europe. The mega cities are under severe stress, ranging from shambling infrastructure to depleting groundwater and unhygienic sanitary conditions.

This volatile state of affairs has not been satisfactorily appreciated at both national and international level. The book titled "The Urban Environmental Crisis in India: New Initiatives in Safe Water and Waste Management" examines the programs and policies espoused so far to remediate the situation, identifies the shortcomings, and looks into the new initiatives that have been undertaken to make the cities self-sustainable units of governance and reliable service providers.

The book cruises through different realms, starting from the need to revisit the existing policy framework. The sustainability prism of solid waste management is fractured and fragmented. Most of the times it has been realized that the policies related to the management of urban solid waste are understated, lack coherence and are not holistic. The policies appear to be more like ill –fitted pieces of the jigsaw puzzle. The book provides glimpses of the informal sector involved in solid waste management laying stress on the rag picker community. It compares reductionist analysis and further incorporates the system thinking development model in the informal sector. The system design approach seems to project that the natural and human designed systems are independent, but actually the two forms interact with each other enabling the franchise model within the biological physical and chemical boundaries.

The status of plastic waste generation and the disposal of the same has been further elaborated upon in the book. The generation of e-waste and the management of the same is emphasized. The chapter also explores the reasons of export of e-waste from developed countries to developing countries such as India and China, as well as the continent of Africa. The need for regularization of the informal sector in managing e-waste, discussion on the flow of e-waste through different niches, substantiating the legal framework and EPR is toured through. The trend of MSW

generation in the present context and the future trend of solid waste generation is explored, positioning emphasis on the concept of ISWM and detailing a comparative analysis of the stand-alone versus regional approach for the SWM facility. The book also tends to capture the various technological options for waste treatment *viz*. incineration composting, bio-methanation, gasification, pyrolysis, incineration, bio-ethanol production, and hydrogen energy to deal with ever mounting unsegregated waste in the megacities such as Mumbai. The special sectors of Paper & Pulp and Plastic recycling industries in India are accentuated upon in the book reflecting the ground reality of the recycling industry in India. The option for using MSW as a source of thermal energy generation is also explored in the book.

Another sector of the book deals with air pollution and related aspects in developing world. The chapters dedicated to air pollution deal with GHG implications of various waste management facilities in India. To achieve low carbon waste management, the ideal choice of technologies needs to be supported by upstream and downstream management strategies. Air pollution generating from solid waste management practices leading to public health crisis in urban India is also emphasized in the book. The book further maneuvers through ambient air quality assessment around the Okhla and Gazipur landfill site. The open-solid waste dumping sites in Delhi are a major source of bio aerosols and trace gases. Residents and garbage handling workers at the landfills are at high health risks. The recovery of landfill gasses also helps in strengthening India's efforts to hit the CO₂ emissions target set at the World forums on climate change. The impact of greenhouse gases and its source of emission with special emphasis on landfill proposing a very valuable and sustainable solution to capture excess carbon to reduce landfill carbon footprint is echoed in the book

The book further widens its scope and covers the river water quality and the ground water and landfill leachate assessment evaluating physiochemical and biological parameters.

AUTHORS' AFFILIATION

Dr. Shyamli Singh,	Indian Institute of Public
Assistant Professor	Administration, New Delhi
Dr. Sameer Prasad,	University of Wisconsin–Whitewater
Professor	(UWW), California, U.S.A.
Dr. Tara Mccloskey,	George Washington University,
Professor	Washington DC
Dr. Shantha Parthan,	University of Canterbury,
Professor	New Zealand
Dr. Jasmine Tata, Professor	Loyola University, Chicago
Dr. S.K Nigam,	Central Pollution Control Board,
Additional Director	New Delhi
Dr. A.B Akolkar,	Central Pollution Control Board,
Member Secretary	New Delhi
Er. Anuj Sinha,	Network of Organisations for Science
Chairman	and Technology Communication, Delhi
	and Member Secretary, Institute of
	Peace Research and Action, Delhi.
Dr. Seema Awasthi, Director	ICUC Consultants Pvt. Ltd, New Delhi
Dr. Satyawati Sharma,	Centre for Rural Development and
Professor	Technology, IIT Delhi, New Delhi
Dr. Kalpana Arora,	Centre for Rural Development and
Project Fellow,	Technology, IIT Delhi, New Delhi
Ms. Ritika Pathak,	Centre for Rural Development and
Research Scholar	Technology, IIT Delhi, New Delhi
Mr. Ashish Jain,	Indian Pollution Control Association,
Director	New Delhi
Ms Roshnimary Sebastian,	Department of Civil Engineering, IIT
Research Scholar	Delhi, New Delhi
Mr. Dinesh Kumar,	Department of Civil Engineering, IIT
Research Scholar	Delhi, New Delhi
Dr. Babu Alappat,	Department of Civil Engineering, IIT
Professor	Delhi, New Delhi
Dr. Ritu Paliwal, Senior	AECOM, Gurgoan, Haryana
Environmental Consultant	

Ms. Niharika Pandey,	Department of Civil Engineering, IIT
Research Scholar	Delhi, New Delhi
Dr. Arvind K. Nema,	Department of Civil Engineering, IIT
Professor	Delhi, New Delhi
Dr. Seema Mishra,	SIES Indian Institute of Environment
Director	Management, Nerul, Navi Mumbai,
	Maharashtra
Dr. Devayani Savant,	SIES Indian Institute of Environment
Adjunct Professor	Management, Nerul, Navi Mumbai,
	Maharashtra
Dr. C. Srinivas,	SIES Indian Institute of Environment
Adjunct Professor	Management, Nerul, Navi Mumbai,
	Maharashtra
Dr. Saumya Singh,	SIES Indian Institute of Environment
Adjunct Professor	Management, Nerul, Navi Mumbai,
	Maharashtra
Dr. Ruchira Ghosh,	Department of Energy and
Research Scholar	Environment, TERI University,
	New Delhi
Dr. Arun Kansal,	Coca-Cola Department of Regional
Professor	Water Studies, TERI University,
	New Delhi
Dr. Radha Goyal,	Indian Pollution Control Association,
Deputy Director	New Delhi
Dr. Papiya Mandal,	CSIR-National Environmental
Scientist	Engineering Research Institute,
	New Delhi
Dr. S. Agarwal,	CSIR-National Environmental
Scientist	Engineering Research Institute,
	New Delhi
Dr. Rahul Upadhyay,	Freelance Consultant
Water Resources and	
Environment Specialist	
Dr. M.K. Chaturvedi,	CSIR-National Environmental
Scientist	Engineering Research Institute,
	New Delhi
Mr. Pradeep Kumar	East Delhi Municipal Corporation,
Khandelwal, Chief Engineer	New Delhi
Dr. Venkatesh Dutta,	Department of Environmental Science,
Assistant Professor	Babasaheb Bhimrao Ambedkar
	University, Lucknow, Uttar Pradesh

Mr. Karunesh K. Shukla,	DST Centre for Policy Research,
Research Assistant	Babasaheb Bhimrao Ambedkar
	University, Lucknow, Uttar Pradesh
Mr. Alok Rai,	DST Centre for Policy Research,
Research Assistant	Babasaheb Bhimrao Ambedkar
	University, Lucknow, Uttar Pradesh
Ms. K. Archana,	Department of Environmental
Research Scholar	Science, Babasaheb Bhimrao
	Ambedkar University, Lucknow,
	Uttar Pradesh

CHAPTER ONE

URBAN WASTE MANAGEMENT IN INDIA: A REVISIT OF POLICIES

SHYAMLI SINGH

Introduction

The sustainable management of urban waste has become a major global concern. The sustainability index featured in the management of solid waste calls for innovative thinking, holistic practice and a revisit of policy and recommendations. The character of urban waste has been totally revamped in the past few decades giving it shades of inorganic waste. The burgeoning population leading to urbanization and changes in lifestyles have also contributed greatly to unsustainable disposal habits and individual consumption.

No policy document in India deals with the whole productionconsumption-recovery pattern of waste. The sustainability prism of solid waste management is fractured and fragmented. Most of the time it has been realized that the policies related to the management of urban solid waste are understated, they lack coherence and are not holistic. The policies are more like ill-fitted pieces of a jigsaw puzzle. The lack of a sound policy and the gaps between policies lead to a call for a revisit of the existing policies. This revisit would facilitate the plugging of the loopholes and would pave the way for a new urban waste management policy which would be more equitable, sustainable and inclusive. This would in turn cater to the demands of the time and would help in facilitating a stage for the development of sustainable smart cities. Albeit the foundation for this has already been laid by the prognostic Solid Wastes Management Rules, 2016, which is drafted to replace the Municipal Solid Wastes (Management & Handling) Rules, 2000, there are a few glitches associated with it. The new Gazette of Solid Waste Rules overlooks the provision of incentives and the imposition of stricter penalties in case of nonadherence. The rules, by and large, are the re-packaging of centralized treatment technologies. The newly drafted Solid Waste Rules send a clear message of pushing technology to the farthest edge. Unfortunately, this embrace of the technology has totally failed to address the issues of reuse, recycling and citizen-centred responses that lead to decentralized waste management.

This chapter aims to highlight the phases which are indispensable for the transition from a centralized to a decentralized waste management mechanism, to achieve a more viable, mainstream and inclusive strategy. This transition can be engineered through strategically planned revisits of existing plans and policies. The results and recommendations of the reconsideration would then act as an underpinning for optimized waste management practices. The chapter also focuses on alternative development models, which would help with the decline of waste generation. This also calls for a paradigm shift by the annexation of socially and politically motivated management plans. The entire gamut of activities ranging from the generation of waste to its collection, segregation, processing and treatment, and finally its disposal must be viewed through the lens of a cradle-to-cradle approach, yielding a new tangent to the various dimensions. The technology options for decentralized treatment should be starred as the unique selling point, and they will act to enable a better-programmed sustainability. A very important dimension that is the prerequisite for any sustainable waste management practice is a reduction in the generation of waste; this can be achieved by targeting consumer behavior and lifestyle management. The sources of waste generation and the approach to catering for the waste generated need a detailed plan of action. This chapter captures this area too and helps in suggesting ways and methods to educate the masses for responsible consumer behavior.

Waste Generation Trends in India

India, a developing country, is heading towards becoming a mass urban sprawl. The extension ranges from rural communities to urban agglomerations and urban centers. According to the United Nations' 1995 estimates, over 400 million people will be clustered in cities over the next three decades. Concerns about both quantity and quality are being linked to encircling the social facet to be in tandem with scientific and political tangents. Despite the snail's pace of its growth and economy, India still stands as the third largest of economies in terms of Purchasing Power Parity (PPP) (World Bank, 2012). It is observed that the non-organic nature of waste is slowly but surely making its way into urban life patterns