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FOREWORD 

The International Conference on Underwater Remote Sensing 
(ICoURS) was held from 8-11 October 2012 at the Le Quartz Conference 
Centre in Brest, France as part of Sea Tech Week. It was composed of 
three symposia: Quantitative Monitoring of the Underwater Environment 
(MOQESM), Advances in Seafloor Mapping, and Detection and 
Classification of Underwater Targets (DCUT), and the last one being the 
subject of these proceedings. DCUT took place on 9-10 October and was 
organized by the Ocean Sensing and Mapping Team of ENSTA Bretagne 
and was, in spirit, the 3rd conference on what can broadly be described as 
Automatic Target Recognition (ATR) for underwater applications: The 
first was CAD/CAC 2001 organized by Defence R&D Canada and held in 
Halifax, Nova Scotia, Canada; and the second was the International 
Conference on Detection and Classification of Underwater Targets, 
organized by Heriot-Watt University and held in Edinburgh, Scotland. 

It was noted during the Plenary Session by keynote speaker Dr. John 
Fawcett that during the 11 years that have passed since the original 
CAD/CAC 2001 conference, progress in the fields of pattern recognition, 
machine learning, image and signal processing, as well as the advent of 
high-resolution sensors such as synthetic aperture sonars have led to 
significant improvements in underwater ATR technology. Perhaps more 
salient, however, is the now ubiquitous presence of Autonomous 
Underwater Vehicles (AUV), making high-performing, computationally-
efficient ATR no longer simply an aid for human operators, but rather a 
necessary technology to enable the use of unmanned systems. In addition, 
the applications of this technology has started to move out of military 
applied research programs, typically the naval mine countermeasures 
(MCM) community, and is being applied in civilian applications such as 
pipeline inspection and environmental monitoring. For this reason, the 
papers of these proceedings will also be of interest to researchers working 
the area of remote sensing (for instance, with Synthetic Aperture Radar) as 
well as medical imaging and robotic perception. 

The increasingly interdisciplinary nature of this field is evident by the 
papers that were presented during DCUT: From traditional acoustics/sonar 
to non-acoustic methods such as ground penetrating radar, magnetic 
gradiometry and video; application of machine learning, pattern 
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recognition, image processing, optimization, anomaly detection, acoustic 
modelling and data fusion; as well as applications such as environmental 
characterization and change detection. 

These proceedings contain 20 papers whose abstracts were reviewed 
by at least two reviewers. We would like to thank all of the reviewers in 
the Scientific Committee listed immediately below for providing their time 
and effort to ensure the quality of the articles in this conference. Also 
included are abstracts of four papers from the Poster Session. We would 
sincerely like to thank Annick Billon-Coat for her help in organizing this 
conference, as well as the staff at the Le Quartz conference centre and 
Brest Métropole Océane for their support. 

The discussions and collaborations that ensue from these conferences 
are key to moving the field forward. With a relatively small community, it 
is important that we come together occasionally in a specialized forum in 
order to share ideas, show some fresh results and obtain feedback on our 
work. We look forward to seeing you all again, along with some new 
faces, during the next incarnation of the DCUT conference, wherever and 
whenever it may be. 

Vincent Myers, Isabelle Quidu and Benoit Zerr 
Brest, France, October 2012
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PREFACE 

AUTOMATIC TARGET RECOGNITION METHODS 
FOR SIDESCAN SONAR IMAGES: 

THE ADVANCES AND THE CHALLENGES 

JOHN A. FAWCETT 

Abstract 

Over approximately the last decade Defence R&D Canada – Atlantic, 
Canada (also known as DRDC Atlantic) has been involved with research 
into Automated Target Recognition (ATR) algorithms for sidescan sonar 
imagery. In this paper, some of the past and present DRDC Atlantic work 
in ATR will be discussed with some illustrative experimental results. 
Related work by other authors is also discussed. 

Keywords: Sidescan Sonar, Automatic Target Recognition, Detection, 
Classification. 

1. Introduction 

In 2001 Defence R&D Canada – Atlantic hosted the conference 
CAD/CAC 2001 in Halifax as an initial start into a research program for 
the development of automated sidescan sonar detection and classification 
methods in support of the Canadian Remote Minehunting System project. 
Now, eleven years later, there has been much progress in image-
processing and pattern recognition algorithms. Synthetic aperture sonars 
(SAS) have significantly improved the resolution of the images of the 
seabed. The use of autonomous underwater vehicles (AUVs) for sonar 
surveys has become very common and there has been interest in making 
AUVs more intelligent and adaptable during a mission. For example, after 
an initial standard survey, an AUV could revisit a list of Automatic Target 
Recognition (ATR) contacts for another sonar look [1] or during the 
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survey the AUV could perform a multi-aspect run at each potential target 
[12, 23]. However, such concepts rely upon accurate and robust ATR 
processing. The development of reliable and computationally-efficient 
ATR methods is more relevant than ever in minehunting. 

  
 (a) (b) 
Figure 1: The semi-submersible remote minehunting vehicle DORADO (a) out of 
the water (b) underway 

For several years, the Mine Counter-Measures group (now Mine 
Warfare group) at DRDC Atlantic, in collaboration with Canadian 
industry, was involved with the development of the remote minehunting 
vehicle DORADO and its associated sensors and software. This vehicle is 
shown in Fig. 1(a) out of the water. On the bottom of the Aurora towfish, 
the Klein 5500 sidescan sonar can be seen. The actively controlled towfish 
can be winched out to depth. The sonar data is transmitted back, in near 
real-time, to a mother ship at distances of up to 12 km away from the 
DORADO. The vehicle is shown underway in the water in Fig.1(b). The 
data is displayed as a waterfall on this ship and an operator and/or 
background ATR algorithms analyze the data for mine-sized contacts. 
Much of the DRDC Atlantic data used for research over the last decade 
was collected from various trials using this system. 

In the following sections, the ATR processing stream is broken down 
into three basic steps: (1) normalization of sonar data (2) simple and rapid 
automated detection and (3) more detailed analysis of small images 
(mugshots or snippets extracted from the second step). This breakdown is 
historically the approach taken at DRDC Atlantic but the divisions are 
somewhat arbitrary. For example, some newer methods of automated 
detection/classification [34, 38] combine, to some extent, steps (2) and (3). 
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2. Normalization 

Typically, recorded sonar data shows systematic amplitude variations 
with respect to range (travel time) and the sonar’s beampattern. The large 
scale amplitude variations can be reduced by computing a local 
background mean amplitude and dividing through by this value. For the 
Klein 5500 data, we typically compute, on a per file and per side basis, an 
average empirical amplitude/cross-range curve and normalize the data by 
this curve. For some sonar data, more complicated vertical beampattern 
effects are observed in the data and need to be accounted for. Dobeck [39, 
40] has described sophisticated normalization algorithms. In these papers, 
he also emphasizes that by reducing the system amplitude variations the 
subsequent false alarm rate in the automated detection phase can be 
significantly reduced. 

There are also environmental features in the data which will cause 
significant false alarms for many automated detectors; in particular, sand 
ripples cause a sequence of highlights and shadows in the sonar data which 
can resemble a minelike structure. In [40, 41], Fourier- and wavelet-based 
methods are described to reduce the effect of ripples on the sonar image. 
In [42], Williams mitigates the effects of ripples during the detection phase 
by considering the distribution of elliptical descriptors of the shadow 
regions and eliminating those regions which are consistent with ripples 
(with some additional criteria to mitigate against “losing” targets). In Fig. 
2(a) we show an unnormalized sonar image (Marine Sonic) from a Remus 
AUV. A surface echo has already been suppressed from the original image 
by predicting its position in the image and replacing abnormally high 
values with a local median value. The coloured lines (cyan and green) 
indicate some predicted grazing angle curves on the seabed as the altitude 
of the AUV varies (the red lines indicate along-track regions of turns). By 
integrating the amplitudes along these curves, across-track normalization 
curves can be computed. The resulting normalized image is shown in Fig. 
2(b). Figs. 2(c) and 2(d) show the results of a simplistic segmentation of 
the image into 5 values representing the range of deep shadow to high 
highlight; first using the normalized image (Fig. 2(c)) and secondly (Fig. 
2(d)) combining the segmentation of Fig. 2(c) with a segmentation [2] 
after filtering the image using the method of Dobeck [40]. The results of 
Fig.2(d) show that much of the shadow due to the sand ripples has been 
eliminated. More details of this processing are described in [2]. 
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Figure 2: A Marine Sonic sonar file showing some different phases of 
normalization: (a) unnormalized data with representative grazing angle curves (b) 
normalized data (c) rebinned into shadow-highlight values and (d) rebinning in 
combination with Fourier filtering. The yellow arrow indicates a mine-like object. 
Data Source: NURC. 

3. Automatic Target Detection 

Given a normalized, filtered sonar image, the DRDC Atlantic detection 
process consists of cross-correlating the image (or a transformation of the 
image) with various filters. One which we have used for several years is 
based upon the work of [3]. As mentioned above, the sonar image is 
roughly segmented into 5 basic values based upon the median value or on 
percentiles of the pixel values. A two-dimensional filter consisting of +1 
for highlight and -1 for shadow is then cross-correlated with the data and 
regions exceeding a threshold are taken to be detection regions. The 
predicted shadow length for a target of fixed height should increase 
linearly with range. This is difficult to implement with FFT-based cross-
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correlations and, in the past, we used 3 different sized (in terms of shadow 
extent) filters to address this issue. The implementation we use in a 
structured C++ development does utilize a continuously growing shadow. 
There are also a variety of other filter possibilities. We have found that the 
local Lacunarity [4] (defined as variance of pixel values/squared mean 
value) can, for some environments, be a very good detection feature. Here 
too, this feature can be computed by using sliding windows to compute the 
local means and mean squared values. In Fig. 3(a) we show a sonar image 
(from the NURC AUV/synthetic aperture sonar vehicle, MUSCLE) 
(unnormalized), in Fig. 3(b) the match-filtered output, in Fig. 3(c) the 
Lacunarity output, and in Fig. 3(d) the detections (yellow) based upon a 
match-filtered threshold and those which exceed the threshold for the 
match filter and also another threshold for Lacunarity (cyan). Here the 
seabed has patches of the seagrass Posidonia. This produces “natural” 
pairs of highlight and shadow which can cause detector false alarms. There 
is a dummy target which can be observed as a high output for both the 
match-filter and the Lacunarity images. 

 
Figure 3: (a) unnormalized NURC MUSCLE data tile (b) matched-filter output (c) 
Lacunarity output (d) resulting detections from a matched-filter threshold (yellow 
boxes) – also satisfying a threshold on Lacunarity (cyan). The output images 
(b),(c) and (d) are computed on a reduced version of the image of (a). Data Source: 
NURC. 
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Williams [42] uses a moving window to find regions of shadow and 
then considers those shadow regions with an associated highlight or echo 
region. In general, one can compute a number of features for a detection 
region: various filter outputs and local statistical values, and the detection 
process (or a secondary detection process) can be improved by looking for 
combinations of features which improve the detection/false alarm ratio [2, 
5, 6]. The method of Williams [42] is a simple example of a cascade: (1) a 
simple detection method (e.g., existence of shadow) is used to eliminate 
much of the sonar image from consideration and then a second detection 
method (e.g., the existence of an associated echo) is applied to those 
regions of the image which remain after step (1). In general, one can use a 
cascade of several detectors to sequentially eliminate regions of the image 
for further consideration. At each successive level of the cascade, the 
detection test used may be more complex (e.g. may involve more 
features), but this is offset by the fact that the number of image regions to 
process at the higher levels is smaller. Sawas et al [34] and Petillot el al. 
[38] used a trained Haar Cascade detection method to obtain very good 
detection performances. This type of detection method was first developed 
in the face-recognition community [7, 8] and various training and testing 
methods are available in the openCV [9] library. In Fig. 4 we show the 
results from a face detection method available in the openCV library 
which uses an existing trained Haar cascade for face detection. We have 
also used the openCV software to train our own cascade for sonar images 
(MUSCLE data from NURC) and utilize the same face detection algorithm 
(with some adjustments of the parameters). A sonar image with the 
resulting detections is shown in Fig. 5. 

 
Figure 4: Two Canadian scientists and a French scientist relaxing on a trial with 
their faces detected by the openCV face detection routine. 
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Whether one wishes to use this type of detection method or not, a very 
powerful concept utilized in this application is that of the integral image 
and the rapid computation of rectangular-based features. The integral 
image is computed from the image 𝐼(𝑖, 𝑗) by computing its two-
dimensional cumulative sum. Then the summed value of the image over a 
specified rectangle can be expressed as the sums and differences of the 4 
corner points. If we wish to consider two adjacent rectangles, one positive 
and one negative, this can be expressed as 6 operations. In fact, the sliding 
window output from a number of different combinations of adjacent 
rectangles or nested rectangles can be very efficiently computed from the 
integral image. In addition, this concept has been extended to include 
rotated rectangular features [8]. This method can be applied to our simple 
matched-filter or Lacunarity detectors (in this case, also computing an 
image of squared pixel values). The increase of the shadow length with the 
across-track pixel index is very simply included with this approach. Once 
a detector, a fused set of detectors, or a cascade of detectors has 
determined a detection point, then a small image about this point 
(mugshot) is extracted. The resulting set of small images is then passed to 
the next stage of analysis – classification. 

 
Figure 5: A sonar image with a fairly complex seabed and two detected objects (no 
false alarms) using a trained Haar-Cascade classifier. Data Source: NURC. 
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4. Classification 

The boundary between classification and detection is not well-defined. 
In the classification phase, it is often desired to classify the mugshots 
resulting from the detection phase as a possible generic mine type: e.g., 
cylinder, sphere, truncated cone, etc… However, since the detection phase 
has usually yielded many false alarms, it is important to eliminate more of 
these. We have tended to think of the detection phase of ATR as being 
computationally efficient, but not being particularly sophisticated. The 
classification phase utilizes more sophisticated methods which require 
more computation time (e.g., feature computation, support vector machine 
classification and template-matching). The face-detection methods 
described in Section 3 are trained with a large set of data (positives and 
negatives) and the training time can be long. However, in the detection 
phase they are very computationally efficient. These methods blur the 
boundary somewhat between the detection and classification phases. 

There are two main approaches in sonar image classification. One is 
shadow- and highlight-feature based. In this approach, the mugshot is first 
segmented into shadow and highlight regions. This is normally a fairly 
sophisticated segmentation approach. That is, instead of using simple hard 
image thresholds to define shadow and highlight, these algorithms 
consider the pixel values and also the neighbouring values in order to 
obtain accurate representations of the shadow and highlight regions. Some 
of these algorithms are an iterative threshold and connectivity method 
[10], Markov Random Fields [11], Statistical Snakes [11], and Fourier 
Descriptors [13]. Although the concept of shadow and highlight 
segmentation is straightforward, it can be surprisingly difficult to develop 
robust methods for complex seabed types. Once the segmentation has been 
performed (and the appropriate regions associated with the detected 
object) various features based upon these regions can be computed. These 
features are often geometrical or statistical in nature: for example, the 
estimated height of the object from the shadow length (and known 
range/altitude of detection), the length of the object, the ratio of the convex 
area/area of the shadow, the standard deviation of the shadow profile, the 
eccentricity of the shadow, the orientations of the shadow and highlight 
regions, the width of the highlight region, etc. A full description of some 
of the features we have used at DRDC Atlantic can be found in [14]. In 
[15] the height profile of an object (estimated from the shadow length) was 
considered as the feature vector. There are also choices of features which 
are invariant to scaling and rotation [16]. In Fig.6 we show a screen 
capture of the display from the DRDC Atlantic Sonar Image Processing 
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System (SIPS) showing the results for an automatic segmentation of 
shadow and highlight and some computed feature values. These feature 
values can subsequently be used for training and testing classifiers. 

Given a set of features, a classifier can be trained using labelled 
mugshots. This can be a binary-classifier or a multi-class classifier. There 
are many possible choices for a classifier. We have often used a kernel-
regression method [17] with an exponential kernel based at each training 
point. For multiple classes, our method is equivalent to solving multiple 
binary problems (i.e, 1 if a specific target type and -1 if not). In this 
approach, we also specifically consider clutter to be a class and train with 
it. This type of approach works well, as long as the preliminary 
shadow/highlight segmentation and computed features are good. 

Sonar images of mine-like objects are collected during sea trials with 
dummy mine shapes deployed on the seabed. There are often only a few 
(e.g. 9) deployed at a site and these are repeatedly imaged at different 
ranges and aspects to yield a few hundred images. The danger in training 
and testing with such a data set is that, despite the changing sonar position, 
it is often the same object (and surrounding seabed) being imaged. In the 
Citadel trial [14, 18], targets and a rock were deployed at 2 sites. The 
rocks were mine sized but were taken to represent the clutter class. They 
were different at the 2 sites. In Table 1 we show the averaged confusion 
matrices from a set of training/testing runs. First, the confusion matrix data 
for a classifier tested using data from Site 2 when trained with Site 1 data 
is shown. Below these classification rates, the results for training and 
testing with just the Site 1 data are shown. In this second case, the 
classifier was able to distinguish the rock from the targets about 83% of 
the time at Site 1. However, when the classifier trained with Site 1 data 
was used at Site 2, the rock at Site 2 is most often confused with the 
truncated cone shape. Thus the “clutter” sample at Site 1 was not 
sufficiently diverse to provide good clutter discrimination at Site 2. The 
classification results for the other dummy target types at Site 2 are good, 
with the classification of the cylindrical shape being somewhat poorer. 
This example illustrates a fundamental concern for ATR using trained 
classification: its ability to perform well in a new environment. 
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Figure 6: The segmentation and feature computation tool from DRDC Atlantic 
SIPS database viewer. 

Table 1: The confusion matrices resulting from using (1) a classifier 
trained with Citadel Site 1 data and tested with Site 2 data and below 
(2) a classifier trained with Citadel Site 1 data and tested with Site 1 
data. 

 Rock T. Cone Wedge Cyl 
Rock 0.26 0.53 0.17 0.03 

 0.83 0.08 0.06 0.03 
T. Cone 0.08 0.82 0.09 0.02 

 0.05 0.92 0.03 0.00 
Wedge 0.00 0.01 0.99 0.00 

 0.01 0.04 0.93 0.02 
Cyl 0.15 0.03 0.06 0.76 

 0.05 0.03 0.03 0.89 
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The other type of classification approach is to work more directly with 
the mugshots’ pixel values. There are pros and cons to this approach. The 
advantages are that it avoids the preliminary shadow/background/highlight 
segmentation. There are often seabed or target features which can cause 
problems for shadow/highlight segmentation. Also, the image-based 
approaches do not rely on explicitly defined features. On the other hand, 
they may be sensitive to the range of the mugshot detection (because of 
the increasing shadow length), normalization effects, the size of the 
mugshot, etc... Some of these problems can be mitigated. For example, 
careful image normalization and consistent placement of the objects within 
the mugshots can help classification performance. One can consider the 
use of expansion functions such as Zernicke polynomials [16, 19, 20] 
which are range/aspect independent. 

Once again, as with the previously-described Haar Cascade methods 
for detection, the image-based classification methods follow closely some 
of the approaches used in facial recognition. In fact, as shown in [34, 38] 
one can train the Haar Cascade method for specific mine types. An 
approach which has been enjoying popularity in the last few years is 
template matching [21, 22, 24, 25, 26, 27] and this is certainly an approach 
which is used, in general, in the object detection community. Various 
algorithms can be found, for example, in the openCV library. The idea is 
to construct for the range (the sonar range corresponding to the across-
track pixel of the detection) of the mugshot detection a set of ray-trace 
model templates (i.e., a basic highlight/shadow structures) encompassing 
the various possible target types and a discrete set of aspects. In our 
implementation, a library of precomputed templates at a discrete set of 
ranges is used. However, one can compute the templates “on the fly” with 
a ray-tracing subroutine. In many of the template approaches, the 
templates are then cross-correlated with the mugshot (or a rebinned 
version of it). The maximum value of the output-filtered image (the cross-
correlation is typically performed by moving the template about the image 
in some neighbourhood of the detection centre) is computed for each 
template and the maximum of these values is taken to indicate the best 
target and aspect match. If this value is not sufficiently high, then the 
object may be deemed to be clutter. There are a variety of different cross-
correlation measures which can be used. Reference [26] discusses various 
template-matching measures. For example, one can simply use the true 
cross-correlation value (as defined for normxcorr2 in the MATLAB image 
processing toolbox based upon the method of [37]) 
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𝐶(𝑢, 𝑣) =
∑  𝑥,𝑦 (𝐼(𝑥,𝑦) − 𝐼𝑢̅,𝑣)(𝑡(𝑥 − 𝑢,𝑦 − 𝑣) − 𝑡̅)

(∑  𝑥,𝑦 (𝐼(𝑥,𝑦) − 𝐼𝑢̅,𝑣)2)1/2𝑁𝑇
 (1) 

Here the template 𝑡 is centred at (u,v) and x,y vary over the portion of 
the image contained within the template. 

A template 𝑡(𝑥,𝑦) is moved about the image and a local image mean 
𝐼𝑢̅,𝑣 and normalization of 𝐼 within the region of the template is computed. 
We have used 𝑁𝑇 in Eq.(1) to denote the 𝐿2 norm of the template. It is 
interesting to note that the computation of the image mean and standard 
deviation within the the moving template window is most efficiently 
accomplished using the method of integral images [37]. A simpler 
expression for Eq.(1) results when the mugshot and template’s mean 
values are taken to be zero [26] (we typically first remap the mugshot and 
template into positive and negative values for relative highlight and 
shadow regions),  

𝐶1(𝑢, 𝑣) =
∑  𝑥,𝑦 (𝐼(𝑥,𝑦)𝑡(𝑥 − 𝑢,𝑦 − 𝑣)

𝑁𝑇𝑁𝐼
 (2) 

where 𝑁𝑇 is the 𝐿2 norm of the template and 𝑁𝐼 is the 𝐿2 norm of the 
image within the extent of the template. In Fig. 7(a) we show a cylinder 
lying in a sand ripple field (NURC MUSCLE data). The template yielding 
the best match is shown in Fig. 7(b). As can be seen, the match is very 
reasonable. In Fig. 7(c) the variation of the maximum value of 𝐶1(𝑢, 𝑣) is 
shown as a function of the hypothesized templates and it can be seen that 
there is a significant relative peak in the neighbourhood of the correct 
match. Although this particular result is encouraging, there can be 
problems with the method. Even in this example, the actual value of the 
output is fairly low – approximately 0.28. This is due to the fact that there 
is a fair amount of speckle in the shadow regions and in our remapping of 
the original image into [-1 1], much of the shadow region is defined as 
background. This means that if we had set a simple threshold to reject 
clutter, this target may have been lost. Also, although we do not show it 
here, there was a rock in this dataset which was quite mine-like and simply 
using the correlation value to discriminate this particular object is not 
reliable. Of course, images from multiple sonar aspects could help this 
situation. Also, simply using a single correlation value as a means of 
classification may not be optimal. There is more information in the entire 
correlation curve (e.g. Fig. 7(c) which is not used and one can also 
consider the curves from other correlation measures. We have [21, 27] 
considered using various sets of template features for classification. 
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Figure 7: Template matching Eq.(2): (a) the input mugshot (a normalized, 
remapped version) (b) the best matching template and (c) the variation of the 
correlation score with template index. Data Source: NURC. 

In [18, 28] we considered expressing a collection of mughots in terms 
of their principal component representation. That is, each mugshot can be 
rearranged as a one-dimensional vector of pixel values. This set of vectors 
has a set of principal components. Linear combinations of the first 50 or so 
of these principal component vectors can often yield very good 
approximations to the image vectors. Of course, each of the Principal 
Component vectors can be reshaped into a two-dimensional image or 
template. The Principal Component coefficients for the mugshots can be 
considered as classification features. Linear combinations of these features 
can be found which optimally discriminate between target classes and/or 
clutter. This is analogous to the concepts of eigen- and Fisher-faces [29] in 
facial recognition. In Fig. 8 we show some results taken from [28]. Here 
the sonar images for rock, truncated cone and small cylinder classes were 
simulated for a fixed range using a ray-trace model. The dimensions of 
these objects were varied randomly within specified limits. Some example 
images are shown in Fig. 8(a). A portion of the images were used to 
determine the best discriminating pixel features or templates which are 
shown in Figs. 8(b) and 8(c). The images from the testing set can then be 
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projected onto those templates resulting in the clustering shown in Fig. 8d. 
Another image-based approach was used in [30]. Here, the authors used a 
convolutional restricted Boltzmann machine to “learn” disciminating 
features and the outputs from the top layer of this machine are then used 
by a support vector machine for classification. 

  
(a) (b) 

 

 
(c) (d) 

Figure 8: (a) some simulated images – truncated cone, small cylinder, rock (b) first 
discriminating template (c) second discriminating template (d) resulting clustering 
of the testing set images. In (a),(b), and (c) the horizontal indices are the across-
track pixel indices and the vertical indices are the along-track indices. In (d) the 
axes are the two discriminating feature values. This figure is taken from [28]. 

We have considered only a fraction of the available image 
classification techniques which can be applied to the problem of 
automated detection and classification of mine-like objects in sidescan 
sonar imagery. Much of the ATR problem is concerned with rejecting 
false alarms. In the case that an AUV will revisit a contact at a different 
aspect(s), either immediately or in a later re-survey, the number of 
contacts must be reasonable. However, there may be seabed regions, such 
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as boulder fields, where it will always be difficult to reduce the number of 
false alarms. Another issue with existing ATR methods is that they often 
rely on a priori knowledge of the objects of interest. The more specific 
this knowledge, the less robust the method may be. One approach which 
addresses these issues is change detection [31, 32]. In this approach, a very 
high percentage of the false alarms which would be present on a single 
survey are effectively eliminated because they are present on a previous 
survey. It is only the differences between the images which are of interest. 
In addition, there is no reliance on a priori information to find the regions 
of change. It is important in this approach that the 2 surveys be accurately 
co-located so that any differences are meaningful. This can be done by 
estimating relative local translations and rotations between the sonar 
images from the data sets themselves. Of course, this approach assumes 
that one is able to carry out repeated sonar surveys of a region. 

It may also be possible to improve target/clutter discrimination by 
considering lower sonar frequencies and wider bandwidths. The ATR 
approaches described in this paper are based upon the analysis of features 
extracted from an image. The sidescan and/or SAS frequencies are usually 
high and any elastic/structural scattering characteristics of a target are not 
exploited. Man-made objects often have distinctive scattering 
characteristics which distinguish them from, for example, rocks. The 
successful use of lower frequency/large bandwidth sonars to 
detect/classify different types or targets has been shown in [33, 35, 36]. A 
hybrid system using high-frequency sonar imagery combined with lower-
frequency wideband spectral information could be an effective system for 
lower false alarm rates. 

5. Summary 

Automatic Target Recognition for sidescan or synthetic aperture sonar 
imagery is a complex area of scientific research. It combines the 
disciplines of sonar sensors, image and statistical processing, fusion 
theory, pattern recognition and more. It plays a fundamental role in 
expanding the autonomous behaviour of AUVs. Despite the advances in 
sonar performance and algorithms, there remain fundamental problems in 
making ATR robust for a wide variety of seabed environments and 
minimizing the number of false alarms without missing the real objects of 
interest. 
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