International Conference on Use-Wear Analysis
Table of Contents

Introduction .. xiv

Part I: Methods

Chapter One .. 2
A Specialized Occupation Despite Appearances. Function of the Buhot Late Glacial Site (Calleville, North-western France)
Jérémie Jacquier

Chapter Two .. 13
Use-Wear Characterization through Confocal Laser Microscopy:
The Case of Wild vs Domestic Cereal Harvesting Polish
J.J. Ibáñez, J.E. González-Urquijo and J. Gibaja

Chapter Three ... 24
Glossy Tools: Innovations in the Method of Interpretation of Use-Wear Produced by Plant Processing
Davide d’Errico

Chapter Four .. 35
Turning the Wheel on Lithic Functionality
Telmo Pereira, Rui Martins and João Marreiros

Chapter Five ... 45
Experimental Program for the Detection of Use Wear on Quartzite
Victoria Aranda, Antoni Canals and Andreu Ollé

Chapter Six ... 56
Micro-residues on Stone Tools: Morphological Analysis, Interpretation and Challenges
H.J. Geeske Langejans and Marlize Lombard

Chapter Seven ... 66
Management of Heated Bladelets in the Southern Chassey Culture: Use-Wear Analysis and Efficiency Test
Loïc Torchy
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eight</td>
<td>80</td>
<td>Ornaments and Use-Wear Analysis, Methods of Study Applied to the Adaïma Necropolises</td>
<td>Mathilde Minotti</td>
</tr>
<tr>
<td>Nine</td>
<td>90</td>
<td>“Cereal polish”: Diagnosis, Challenge or Confusion</td>
<td>Maria Gurova</td>
</tr>
<tr>
<td>Ten</td>
<td>103</td>
<td>Ten Years of Use-Wear Analysis of Early Neolithic Macrolithic Tools from North-Western Europe: Limits and Contribution</td>
<td>Caroline Hamon</td>
</tr>
<tr>
<td>Eleven</td>
<td>116</td>
<td>The Effects of Cleaning on Surface Roughness: Evaluating Sample Preparation Using Use-Wear Quantification</td>
<td>Danielle Macdonald and Adrian Evans</td>
</tr>
<tr>
<td>Twelve</td>
<td>124</td>
<td>Use-Wear Analysis on Quartz and Quartzite Tools Methodology and Application: Coudoulous I (Midi-Pyrénées, France)</td>
<td>Flavia Venitti</td>
</tr>
<tr>
<td>Part II: Hunter-Gatherers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thirteen</td>
<td>140</td>
<td>New Functional Data concerning Middle Palaeolithic Bifaces from Southwestern and Northern France</td>
<td>Emilie Claud</td>
</tr>
<tr>
<td>Fourteen</td>
<td>152</td>
<td>Use of Middle Palaeolithic Tools in San Quirce (Alar del Rey, Palencia, Spain)</td>
<td>Ignacio Clemente-Conte, J. Carlos Diez Fernández-Lomana and Marcos Terradillos Bernal</td>
</tr>
<tr>
<td>Fifteen</td>
<td>162</td>
<td>Flint Workshop or Habitat? Technological and Functional Approaches towards the Interpretation of Site Function in Bergerac Region Early Aurignacian</td>
<td>Joseba Rios-Garaizar and Iluminada Ortega Cordellat</td>
</tr>
<tr>
<td>Chapter Sixteen</td>
<td>The Camp of Upper Palaeolithic Hunters in Targowisko 10 (S Poland)</td>
<td>Bernadeta Kufel-Diakowska and Jarosław Wilczyński</td>
<td>173</td>
</tr>
<tr>
<td>Chapter Seventeen</td>
<td>The Contribution of Traceology and Lithic Technology in the Study of the Socio-economic Capsian of SHM-1 (Hergla, Tunisia)</td>
<td>Rym Khedhaier El Asmi, Simone Mulazzani and Lotfi Belhouchet</td>
<td>183</td>
</tr>
<tr>
<td>Chapter Eighteen</td>
<td>Typology versus Function: Technological and Microwear Study of Points from a Federmesser Site at Lubrza (Western Poland)</td>
<td>Jacek Kabaciński, Iwona Sobkowiak-Tabaka and Małgorzata Winiarska-Kabacińska</td>
<td>198</td>
</tr>
<tr>
<td>Chapter Nineteen</td>
<td>Use-Wear Analysis of a Set of Geometric Projectils from the Mesolithic Context of Cocina Cave (Eastern Spain)</td>
<td>Oreto García Puchol, Niccolò Mazzucco, Juan F. Gibaja Bao and Joaquim Juan Cabanillas</td>
<td>213</td>
</tr>
<tr>
<td>Chapter Twenty</td>
<td>Late Mesolithic Notched Blades from Western Europe and North Africa: Technological and Functional Variability</td>
<td>Bernard Gassin, Juan Francisco Gibaja, Pierre Allard, Toomaï Boucherat, Émilie Claud, Ignacio Clemente, Colas Gueret, Jérémie Jacquier, Rym Khedhaier, Grégor Marchand, Niccolò Mazzucco, Antoni Palomo, Unai Perales, Thomas Perrin, Sylvie Philibert, Amelia Rodríguez and Loïc Torchy</td>
<td>224</td>
</tr>
<tr>
<td>Chapter Twenty One</td>
<td>Experimentation and Functional Analysis of the Backed Point Tools from the Castello’s Shelter at Termini Imerese (PA, Italy) Preserved from the Museo delle Origini (Rome)</td>
<td>Stefano Drudi</td>
<td>232</td>
</tr>
<tr>
<td>Chapter Twenty Two</td>
<td>Functional Analysis of a Magdalenian Site from the Spanish Northern Meseta: A Case Study of Endscrapers from La Peña de Estebanvela (Ayllón, Segovia)</td>
<td>Ignacio Martín Lerma and Carmen Cacho Quesada</td>
<td>241</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Authors</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Twenty Three</td>
<td>The Proto-Aurignacian “Knives” of the Riparo Mochi (Balzi Rossi, Italy)</td>
<td>Stefano Grimaldi</td>
<td></td>
</tr>
<tr>
<td>Twenty Four</td>
<td>A Microwear Analysis of Handaxes from Santa Ana Cave (Cáceres, Extremadura, Spain)</td>
<td>Andreu Ollé, Josep Maria Vergés, Luna Peña, Victoria Aranda, Antoni Canal and Eudald Carbonell</td>
<td></td>
</tr>
<tr>
<td>Twenty Five</td>
<td>Stone Tool Hafting in the Middle Palaeolithic as Viewed through the Microscope</td>
<td>Veerle Rots</td>
<td></td>
</tr>
<tr>
<td>Twenty Six</td>
<td>Lithic Technology and Tool Use in the North American Archaic: Bridging Technologies, Plants, and Animals</td>
<td>April K. Sievert and Melody K. Pope</td>
<td></td>
</tr>
<tr>
<td>Twenty Seven</td>
<td>Lithic Use-Wear Analysis from the Early Gravettian of Vale Boi (Southwestern Iberia)</td>
<td>João Marreiros, Juan Gibaja and Nuno Bicho</td>
<td></td>
</tr>
<tr>
<td>Twenty Eight</td>
<td>Integrated Functional Studies of Badegoulian Lithic Industry: Preliminary Results of Le Péhau (Coimères, France)</td>
<td>Amaranta Pasquini, Gilles Monin and Paul Fernandes</td>
<td></td>
</tr>
<tr>
<td>Twenty Nine</td>
<td>Human Occupation of the High-Mountain Environments: The Contribution of Microwear Analysis to the Study of the Cova del Sardo Site (Spanish Pyrenees)</td>
<td>Niccolò Mazzucco, Ignacio Clemente and Ermengol Gassiot</td>
<td></td>
</tr>
<tr>
<td>Thirty</td>
<td>Wood Technology of Patagonian Hunter-Gatherers: A Use-Wear Analysis Study from the Site of Cerro Casa de Piedra 7 (Patagonia, Argentina)</td>
<td>Laura Caruso Fermé, Ignacio Clemente, Sylvie Beyries and Maria Teresa Civalero</td>
<td></td>
</tr>
</tbody>
</table>
Chapter Thirty One .. 352
Unmodified Quartz Flake Fragments as Cognitive Tool Categories:
Testing the Wear Preservation, Previous Low Magnification Use-Wear
Results and Criteria for Tool Blank Selection in Two Late Mesolithic
Quartz Assemblages from Finland
Noora Taipale, Kjel Knutsson and Helena Knutsson

Chapter Thirty Two ... 362
A Consideration of Burin-Blow Function: Use-Wear Analysis
of Kamiyama-Type Burin from the Sugikubo Blade Assemblage
in North-Central Japan
Akira Iwase

Chapter Thirty Three ... 375
The Two Faces of Resharpening: Management and Use of Resharpening
Flakes in the Middle Paleolithic at Cueva Morín
Talía Lazuén

Chapter Thirty Four ... 389
Looking for the Use and Function of Prismatic Tools in the Mesolithic
of the Paris Basin (France): First Results and Interpretations
Caroline Hamon and Sylvain Griselin

Chapter Thirty Five ... 398
Semi-product, Waste, Tool… Are We Sure? Functional Aspect of Stone
Age Morphological Flint Tools
Grzegorz Osipowicz

Chapter Thirty Six ... 430
The History of One Arrowhead from a Peat Bog Site in Central Russia
(Technological and Use-Wear Studies)
Natalia Skakun Mikhail Zhilin Vera Terekhina

Part III: Projectile Technology

Chapter Thirty Seven ... 442
The Functionality of Palmela Points as Throwing Weapons
and Projectiles: Use-Wear Marks
Carmen Gutiérrez Sáez, Ignacio Martín Lerma
and Alba López del Estal Charles Bashore Acero
Chapter Thirty Eight .. 457
Arrowheads without Traces: Not Used, Perfect Hit or Excessive Hafting Material?
Yvonne Lammers-Keijsers, Annemieke Verbaas, Annelou van Gijn
and Diederik Pomstra

Chapter Thirty Nine .. 466
Projectile Experimentation for Identifying Hunting Methods
with Replicas of Upper Palaeolithic Weaponry from Japan
Katsuhiro Sano and Masayoshi Oba

Chapter Forty .. 479
Possibilities of Identifying Transportation and Use-Wear Traces
of Mesolithic Microliths from the Polish Plain
Katarzyna Pyżewicz and Witold Grużdz

Chapter Forty One ... 488
Use and Maintenance of Leaf-Shaped Points in the Late Upper
Palaeolithic in the Japanese Islands
Takuya Yamaoka

Chapter Forty Two .. 500
Projectiles from the Last Palaeolithic Hunter-Gatherers in the Eastern
Cantabrian Region: Azilian Backed Points at the Site of Santa Catalina
Jesús González-Urquijo, Juan José Ibáñez and Eduardo Berganza

Part IV: Bone Technology

Chapter Forty Three .. 512
Two Experimental Programs to Study the Bone Tools from the Middle
Palaeolithic Hunter-Gatherers
Millán Mozota

Chapter Forty Four ... 521
All the Same, All Different! Mesolithic and Neolithic "45° Bevelled
Bone Tools" from Zamostje 2 (Moscow, Russia)
Yolaine Maigrot, Ignacio Clemente Conte, Evgeny Gyria,
Olga Lozovskaya and Vladimir Lozovski
Chapter Forty Five ... 531
Recovering the Oldest Bone Tool Assemblage from Low Paraná Wetland
Natacha Buc

Chapter Forty Six .. 539
Traces on Mesolithic Bone Spatulas: Signs of a Hidden Craft
or Post-Excavation Damage?
Sara Graziano

Chapter Forty Seven .. 551
Bone Tools Use-Wear in an Early Formative Pastoralist Site of Northern
Chile: Weaving and Piercing at the Dawn of Herds
Boris Santander

Chapter Forty Eight ... 561
Atypical Use of Bone Objects of Known Forms from Some East
European Upper Paleolithic Sites
Natalia B. Akhmetgaleeva

Part V: From the Neolithic to the Iron Age

Chapter Forty Nine .. 572
Investigating Neolithic Activities: The Contribution of Functional
Analysis to the Reconstruction of Settlements’ Economy in Central-
Southern Italy
Cristiana Petrinelli Pannocchia

Chapter Fifty .. 584
The Use of Flint Artifacts from Early Neolithic Levels at Atxoste (Basque
Country): An Interpretation of Site Function through Use-Wear Analyses
Unai Perales Barrón, Juan José Ibáñez Estévez and Alfonso Alday Ruiz

Chapter Fifty One .. 597
Use-Wear Analysis of Chipped Stone Assemblages from Neolithic Burial
Caves in Portuguese Estremadura: The Case of Bom Santo (Lisbon)
Juan Francisco Gibaja and António Faustino Carvalho

Chapter Fifty Two ... 607
Comparative Analysis of Shell Tools from Two Neolithic Sites in NE
Iberia: La Draga and Serra del Mas Bonet (Girona)
I. Clemente-Conte, D. Cuenca-Solana, M. Oiva-Poveda, R. Rosillo-Turrà
and A. Palomo-Pérez
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fifty Three</td>
<td>Investigating Pottery Technological Patterns through Macrowear Analysis: The Chalcolithic Village of Maccarese-Fiumicino (Italy)</td>
<td>619</td>
</tr>
<tr>
<td>Fifty Four</td>
<td>Experimental Approach to Use-Wear Damage on Limestone Tools Comparing with Flint Tools</td>
<td>630</td>
</tr>
<tr>
<td>Fifty Five</td>
<td>Use-Wear Analysis of Early Neolithic Lithic Industry of Peiro Signado: A Pioneer Implantation in South of France</td>
<td>642</td>
</tr>
<tr>
<td>Fifty Six</td>
<td>A Neolithic Sickle Haft from Costamar (Castellón, Spain)</td>
<td>652</td>
</tr>
<tr>
<td>Fifty Seven</td>
<td>The Perforation of Pottery using Seashells: An Experimental Approach</td>
<td>660</td>
</tr>
<tr>
<td>Fifty Eight</td>
<td>Beyond Chaves: Functional Analysis of Neolithic Blades from the Ebro Valley</td>
<td>672</td>
</tr>
<tr>
<td>Fifty Nine</td>
<td>Lithic Functional Studies in Ireland: A Case Study from Early Neolithic Rectangular Timber Houses</td>
<td>682</td>
</tr>
<tr>
<td>Sixty</td>
<td>The Materiality of Funnelbeaker Burial Practices: Evidence from the Microscope</td>
<td>693</td>
</tr>
<tr>
<td>Sixty One</td>
<td>Funerary Adornments: Objects Belonging to the Living or to the Dead? A Few Examples from the Romanian Eneolithic</td>
<td>702</td>
</tr>
</tbody>
</table>
Chapter Sixty Two .. 714
Associating Residues and Wear Traces as Indicators of Hafting Methods: A View from the Chipped Stone Industries from the Island of Gavdos, Crete
Eleni Chriazomenou, Christina Papoulia and Katerina Kopaka

Chapter Sixty Three .. 727
Raw Material Selection for Pounding and Grain Processing in the Single Grave Culture of the Netherlands: The Site of Mienakker
Virginia Garcia-Diaz

Chapter Sixty Four .. 736
What are Prehistoric Tools with Very Rounded Edges Doing in Iron Age Storage Pits?
Renaud Gosselin

Chapter Sixty Five .. 745
Flint Blade Use-Wear in Late Neolithic/Chalcolithic Collective Burials: Data from Pastora Cave (Eastern Spain)
Oreto García Puchol, Juan Francisco Gibaja Bao, Joaquim Juan Cabanilles and Sarah B. McClure

Chapter Sixty Six .. 755
Technology and Function of the Chalcolithic Dagger from Cabezos Viejos (Arjena, Murcia, Spain)
C. Gutiérrez Sáez, I. Martín Lerma, J.A. Marín de Espinosa and J. Lomba Maurandi

Chapter Sixty Seven .. 764
First Results on Use-Wear Analysis over Several Early Neolithic Contexts from Northwest Africa
Amelia Rodríguez-Rodríguez, Jörg Linstädter, Juan F. Gibaja, Manuel Rojo, Ines Medved, Rafael Garrido, Antoni Palomo, Antonio F. Carvalho, Iñigo García and Cristina Tejedor

Contributors ... 772
INTRODUCTION

Prehistoric tools and implements are one of the most important resources for the study of early technology among human populations. Since Semenov’s pioneer work on functional interpretations during the last decade experimental tests as well as macro and microwear analyses have been used as important methods to recognize diagnostic evidence of prehistoric human technology.

From these studies, different types of wear traces on tool surfaces were recognized (e.g., hunting projectile traces, residue analysis), and such diversity led to the development of new or different methodological and technological developments. It is a source of diverse information, which is necessary to solve both local and global problems, from the identification of functions of individual tools to the reconstruction of prehistoric economic systems. Thus, during the last decade use-wear analysis has focused on different approaches to study archaeological data.

Despite technological and functional perspectives on use-wear studies, archaeologists use these data to infer about broad topics and interpret prehistoric living activities, and, therefore, socio-cultural transformations within and between those populations. Recently, use-wear research led to the discussion and interpretations on new subjects. Topics such as the onset and expansion of the first farmers from the Near East to Europe, the diversity within lithic technological facies in Southwestern French Middle Palaeolithic, Early hunting techniques in Middle Stone Age of South Africa, and characterization of site function in Palaeolithic and Mesolithic contexts have been scrutinized by use-wear analysts.

With these ideas and facts in mind, we organized the International Conference on Use-Wear Analysis 2012 (Use-Wear 2012), held at the University of Algarve, Faro, October 10, 11 and 12th 2012. Since the last use-wear international meeting in Verona (2005), “Prehistoric Technology, 40 Years Later: Functional Studies and the Russian Legacy”, many projects and data have been developed. Our goal was to provide a perfect setup to present ongoing projects and a forum for archaeologists to present and discuss the latest research on nature and timing of functional, technological and palaeoethnographic data.
During the Use-Wear 2012 meeting contributions included all different use-wear approaches, such as theory and method, archaeological artefacts, and residue analysis.

As a result of this conference is this volume, focusing on topics from methodological, geographic and chronological perspectives, and includes chapters covering different topics: methods (Part I: Methods), technology (Part II: Projectile technology and Part III: Bone technology), Early Stone Age, Middle Palaeolithic/Middle Stone Age, Upper Palaeolithic and Mesolithic cultures (Part IV: Hunter-Gatherers), Neolithic to the Iron Age (Part V).
PART I:

METHODS
CHAPTER ONE

A SPECIALIZED OCCUPATION
DESPITE APPEARANCES:
FUNCTION OF THE BUHOT LATE GLACIAL SITE
(CALLEVILLE, NORTH-WESTERN FRANCE)

JÉRÉMIE JACQUIER

Université de Rennes 1, UMR 6566 CReAAH
263 Avenue du général Leclerc, Campus de Beaulieu, bâtiment 24-25
35042 Rennes Cedex. France
Jacquier.jeremie@gmail.com

Abstract

This paper summarizes the use-wear analysis of flint artefacts of the Buhot site. This site is located at Calleville in the north-west of France. It is attributed to the Pleistocene-Holocene transition. During this period in the Paris Basin, Northern France and Southern England, many sites are recognized as “belloisian” sites, “long blades” or “bruised blades” assemblages. They are interpreted as specialized in the production of long blades. According to the current hypotheses, these blades may have been produced for the processing of game killed in the surrounding area. At the Buhot site, the production is similar but the better illustration of domestic tools and projectile points suggests a wider range of activities. The use-wear analysis of a large sample of lithic remains (1409 artefacts) selected amongst retouched and unmodified blanks, allows a better understanding of the site function. Despite appearances, this site could be a short-term occupation focused on the first phases of game processing. Even if other activities did take place at the site, they seem to be marginal as much by their representativeness, as by the blanks involved.
Keywords: Pleistocene-Holocene transition, use-wear analysis, flint artifacts, site function.

1. Introduction

Functional analysis of the sites attributed to the Pleistocene-Holocene transition in the North of France is scarce and limited to the understanding of the function of bruised blades (Fagnart and Plisson 1997). This analysis constitutes the first approach on a large sample of lithic artefacts allowing the reconstruction of past activities. This work falls within the framework of Ph.D. dissertation research, focusing on the use and management of flint implements, site function and socio-economic organization of hunter-gatherers during the Pleistocene-Holocene transition in North-western France. During this period, at c.10000 BP, in the Paris Basin, Northern France and Southern England, the record of human activities seems to be essentially related to specialized sites. Most of them are located near good raw material sources. They are characterized by: (1) long blade production, (2) a frequent deficit in long and regular blades suggesting a circulation of the blanks, (3) a scarcity of points and retouched tools, and (4) a presence of bruised blades, sometimes in large numbers. These sites are known as “belloisian sites”, “long blade” or “bruised blade” assemblages. They were first recognized as flint procurement and knapping sites from which long blades are generally taken away (Fagnart 1988; Bodu and Valentin 1992). However, the presence of fauna and activity areas on several sites suggests a more complicated situation. According to the current hypothesis, some belloisian sites could be short time settlements located “near both the kill sites and the good flint raw material sources” (Bodu et al. 2011, 247). At these camps, cutting tools may have been produced for the processing of game killed in the surrounding area (Valentin 2008; Bodu et al. 2011). The cultural identity of these functionally oriented sites is not clear due to the specialization of these sites and the scarcity of the cultural indicators. Belloisian sites are now considered as specialized Laborian/Epi-Laborian and Ahrensburgian/Epi-Ahrensburgian occupations (Valentin 2008; Fagnart 2009).

The techno-economical study shows that the Buhot site is dated to the Pleistocene-Holocene transition (Biard and Hinguant 2011). The technical and economical characteristics of the production is characteristic of the Belloisian production (good raw material, use of soft hammerstone, careful shaping of the blocs, production of long straight and regular blades, circulation of the blanks, and the presence of bruised blades) but this site differs on various levels. Contrary to Belloisian sites the bladelet
production is better represented. Indeed, at the Buhot site, bladelets and blades are produced in equal proportions. These products were produced and transformed into projectile points, which are well represented. Finally, the good representation of retouched tools suggests that a wide range of activities has been carried out. The Buhot constitutes one of the unique sites of the Pleistocene-Holocene transition on which "Belloisian like" long blade production is associated with a rich tool kit (projectile points and retouched tools). Therefore, it was considered as a potential residential site (Valentin 2008).

2. The Buhot site

The Buhot site is located in the Eure département in North-western France (Fig. 1). The open-air site was excavated ten years ago by M. Biard and S. Hinguant before highway roadwork (Biard and Hinguant 2011). Organic material is not preserved. A total of 5000 lithic artefacts were recovered. According to M. Biard and S. Hinguant, the distribution pattern of the lithic remains reveals the presence of two scatters, separated by a hearth (ibid.; Fig. 1). Although there has been a large number of refittings, few of them show connections between pieces from the two scatters. Therefore, it is hard to know if this site results from a single or a quick succession of human occupations (ibid.).

All flint varieties are local and available within a 5 km radius around the site. The aim of this flint production is to provide regular blades and bladelets. A non-quantified part of the blade production was taken away and at least 14 blades have been brought in to the site (ibid.).

The retouched tools are well-represented in comparison with the Belloisian sites. End scrapers (n=35) and burins (n=20) dominate the retouched tools. Amongst these retouched tools, only a part of the scrapers were made on regular blades. During the technological analysis several unmodified elements were identified as used elements. According to the size of the edge damage, and their distribution, some elements were qualified as bruised (nb=4), splintered (nb=13) or with used edges (nb=19).

A total of 52 projectile points were found. The majority of them were made by oblique and concave truncation. These points are common in Epi-Ahrensburgian sites such as Gramsbergen, Oudehaske in Northern Netherlands (Johansen and Stapert 1998), or in the long blade sites of Uxbridge (Lewis 1991) and Launde (Cooper 2006). It could indicate an affiliation with the Epi-Ahrensburgian tradition (Biard and Hinguant 2011) as proposed by J.-P. Fagnart for the Belloisian sites of the Somme Valley in
among the uncovered projectile points, there are two Malaurie points, which are usually found in Laborian contexts. This could indicate more southern influences (Biard and Hinguant 2011).

M. Biard and S. Hinguant considered the Buhot site as a short-term occupation because of the limited number of artefacts uncovered and the rather low structuration of the site (Biard and Hinguant 2011).

Fig. 1: Location of the Buhot site (CAD: L. Quesnel), distribution of the lithic artifact (Biard and Hinguant, 2011) and use-wear analysis sampling for unmodified elements.

3. Low use ratio

Functional analysis has been realized on 1409 pieces. All the retouched tools (n=85) and edge damage artefacts (n=35) identified during the technological study were examined. To avoid a subjective selection, all the unmodified blanks, except for the chips (n=1154), from a large spatial
Chapter One

6

sample (Fig. 1). Finally the sampling was completed by 135 pieces coming from the refitting process to understand the aim of the production and to look at the function of the blades brought on the site. The results of this additional sampling are limited and will not be detailed in this paper. Due to the lack of time and the need for unwieldy experimentations for each projectile type, projectile points have not yet been analyzed. Nevertheless, an experimental program focused on the functioning of late glacial projectile points will be set up soon. The present functional analysis used low and high magnifications according to the methodological protocols defined by S. A. Semenov (1964) and L. H. Keeley (1980). Post-depositional surface modifications are in most cases limited to a microscopic soil sheen and the presence of bright spots.

Within the entire sample, only 93 implements exhibit use traces. It represents 139 used zones (UZ). Amongst the 93 used elements, 31 are retouched tools, 33 were qualified as used during the technological analysis and only 29 were found on unmodified pieces during the use-wear analysis. Amongst the 1257 elements from the spatial sample (which included retouched tools and edge damage artefacts), only 29 elements show used traces (2.3%). A lot of regular blades do not exhibit any use-wear. Furthermore, various uses are frequent but different uses are hardly ever combined and recycling evidences are extremely rare. All these observations support the idea that the Buhot site was a short term occupation.

4. Rather restricted activities

Regarding the number of UZ within the entire sample, butchery (44 UZ) is the main activity. Long, straight, regular unmodified blades were used. The traces (Fig. 2, a, b) are located along the distal or proximal half of the blank. This distribution could indicate the importance of the extremity during use. These long blades could have been very efficient in such tasks. These tools may have been easily held during tasks that require a lot of strength, such as dismemberment. Hide working (22 UZ) has been observed on 14 end scrapers and 6 unmodified implements. Skin processing is almost limited to a scraping motion. Only 4 UZ on unmodified edges are attributed to cutting motion. The states of the hide are principally wet or fresh (Fig. 2, c, d) but 4 end scrapers exhibit extensive edge rounding with matt polish and craters in them and are attributed to dry hide scraping. The scarcity of the cutting motion and the clear dominance of wet or fresh hide scraping suggest that in the Buhot site, hide working tools are mainly involved in the first phases of the
technical process. At the Buhot site, 32 pieces display edge damages attributed to a percussive motion. Bruised edges occur on irregular blades or crests, sometimes on large flakes. These pieces are associated with the earliest reduction of the cores (large flakes, crests, irregular blades). According to the distribution, cross-section, size and shape of the edge scaring and to the presence or absence of abrasion, striations, cracking or incipient cones along the edges it was possible to distinguish two main functions. Most tools are attributed to percussive motion on mineral material (Fig. 2, h). As proposed by H. Plisson and J.-P. Fagnart for the bruised artefacts of Belloisians sites in the Somme Valley, these tools, may have been used for maintaining the soft hammerstones (Fagnart and Plisson 1997). Nevertheless, contrary to bruised edges at these sites, this type of bruising at the Buhot site never exhibits rounding. The experimentations carried out suggest that bruised pieces may have been used for preparing core overhangs (Jacquier, in press, in progress). As in other contemporaneous sites (Surmely 2003; Naudinot 2010), many blade butts exhibit percussion traces predating the extractions of the blades (Fig. 2, l) and which could be evidence for the core’s overhang preparation. Five bruised elements show different edge damages characterized by bending fractures (Fig. 2, g). These marks result from the percussion of hard organic material such as bone, antler or wood. No microwear was observed so it is difficult to define the worked material. Scraping unspecified bone material involves only 4 burins and a burin spall (used before the extraction). No cutting, boring or grooving was observed. The UZ represents the facets (Fig. 2, i). These tools may have been used for shaping or sharpening bone tools. The scraping and grooving of mineral material involve 5 elements. Traces are similar from tool to tool and indicate that the mineral was hard and abrasive (Fig. 2, j, k). No residue was observed. For the scraping motion, unmodified edges and blade butts were used. For the grooving motion, a natural point and the angle of a bending fracture were used. No production in mineral matter was found during the excavation. So it is difficult to know whether the scraping and grooving of mineral material was to transform a surface or to grind mineral material to a powder. Just one piece shows use traces clearly related to plant work. It is a burin used on the two facets. The distribution of the use marks indicates a negative rake cutting with the ventral face as a contact face (Fig. 2, e, f).
Fig. 2: Macro and micro-photographs.
[a] and [b]: macro-traces attributed to butchering activities (photograph [a] taken on blade n°1, fig. 3); [c] and [d]: taken on the front of scraper n°8, fig. 3, scraping wet/fresh hide. [c]: ventral face as a contact face and [d] retouched face as a leading surface, note the way the polish goes inside the depressions; [e] and [f]: burin n°7 fig. 3, scraping plant. [e]: ventral face as a contact face. [f]: facet of the burin as a leading surface; [g]: taken on blade n°5, fig. 3, percussion on hard organic material; [h]: percussion on hard mineral material; [i]: scraping bone material with a burin facet; [j]: photograph taken on flake n°11, fig. 3, bevel created in scraping hard abrasive mineral matter; [k]: micro-wear observed on the macroscopic bevel on flake n°11 fig. 3; [l]: blade butt with percussion traces indicating a preparation of the core overhang in a percussive motion.
5. And specialized blanks

The aim of the production is to provide straight and regular blades and bladelets. The production of blanks and especially the long blades is very...
demanding and requires skilled craftsmen. Techno-functional analysis shows that amongst the blades produced at the site, the longest and more regular were used for butchering (Fig. 3). Imported blades seem to be used only for these tasks. Several regular blades produced at the site were also retouched into scrapers for skin processing. Amongst the full sample, no unmodified bladelets show use marks. So it seems that bladelets were transformed into projectile points. Bone material working, plant scraping, mineral scraping and grooving, percussion on mineral or hard organic material and the main part of the hide working tools were carried out with secondary products like flakes and irregular blades or even crests and rejuvenation flakes. The differential use of tools according to the type of blanks (Fig. 3) could indicate that, at this site, the first attempt of lithic production is to provide blanks for hunting and the first phases of game processing.

6. Conclusion

In such a background where most of the sites are considered as specialized occupations oriented toward the production of long blades for deferred uses, the good representation of tools and projectile points suggests the Buhot site to be a residential camp with diversified activities. However, this use-wear analysis shows that the Buhot site remains specialized in nature. The activities performed are rather limited and some of them seem to be only partially done at the site. The segmentation of the chaîne opératoire is particularly visible in hide processing and maybe in the bone working. The specialization of the site is perceptible through the specialization of the most demanding blanks in the butchering of game. The low ratio of used artefacts and the scarcity of multiple uses and recycling suggest that this site was occupied for only a short duration. The Buhot site could be interpreted as a short term occupation related to the first phases of game processing and preparing for the hunt.

This work shows the importance of use wear study to the interpretation of site function and the risk incurred in using typological arguments for such a question.

Acknowledgements

I would like to thank M. Biard and S. Hinguant for allowing me to study this site. I wish to thank H. Pioffet, N. Naudinot and K. Donnart for their rereading of the text and L. Quesnel for the illustration.
References

groupes humains de la transition Pléistocène-Holocène dans le Nord-Ouest de la France, thèse de doctorat, Université de Rennes 1.

CHAPTER TWO

USE-WEAR CHARACTERIZATION THROUGH CONFOCAL LASER MICROSCOPY: THE CASE OF WILD VS DOMESTIC CEREAL HARVESTING POLISH

J.J. IBÁÑEZ, 1 J.E. GONZÁLEZ-URQUIJO,2 AND J. GIBAJA3

1Department of Archaeology and Anthropology
Milá y Fontanals Institution. Spanish National Research Council (CSIC)
Egipciacas 15, 08001, Barcelona, Spain.
ibanezjj@imf.csic.es

2Instituto Internacional de Investigaciones Prehistóricas de Cantabria
Universidad de Cantabria, Avda. de los Castros s/n, 39005 Santander, Spain
jesuse.gonzal@unican.es

3Department of Archaeology and Anthropology.
Milá y Fontanals Institution. Spanish National Research Council (CSIC).
Egipciacas 15, 08001, Barcelona, Spain.
jfgibaja@imf.csic.es

Abstract

Many problems have arisen over the description and characterization of polished surfaces, which are described in terms of visual appearance. As a contribution to solve this problem, we propose to measure use-wear polish through confocal laser microscopy. This technique is used to discriminate between wild vs. domestic cereal harvesting polish. Wild cereals must be harvested before the complete maturation of the plant, while domestic cereals are harvested ripe. This difference in the degree in humidity when harvesting provokes differences in the characteristics of the use-wear polish. Achieving this discrimination is important to
understand the process of cereal domestication in the Near East. The discriminant function which distinguishes both types of use-wear polishes is used to classify four archaeological sickle elements from Late PPNB, Middle PPNB, PPNA and Natufian archaeological levels.

Keywords: Neolithic, agriculture, cereal harvesting, Natufian, PPNA, PPNB, Near East.

1. Introduction

Visual characterization allows a first approach to the characteristics of harvesting polish. However, many problems have arisen over the description and characterization of polished surfaces, which are described in terms of visual appearance (Vaughan 1985, 29; Mansur-Franchomme 1983b, 223). As they are not expressed in a quantitative form, the criteria for the identification of different polishes present a certain level of subjectivity, which thus has an effect on the level of reliability of the interpretations. The need to quantify use polish was evident to the first use-wear researchers (Keeley 1980, 62-63). Different methods have previously been used to attempt a quantification of use-wear polish, such as interferometry (Dumont 1982), image analysis (Grace et al. 1987; Vila and Gallart 1993; González Urquijo and Ibáñez 2003) or atomic force microscopy (Kimball et al. 1995). During the last decade laser confocal microscopy has proved to be an accurate and easy-to-use technique for use-wear quantification (Evans and Donahue 2008; Stevens et al. 2010; Evans and Macdonald 2011).

This paper contributes to the topic of use-wear quantification. We use confocal laser microscopy in order to quantitatively discriminate wild vs. domestic harvesting use-wear polish. This discrimination is important in order to shed light on the process of cereal domestication. The invention of agriculture is one of the most important cultural achievements of humankind. In the Near East, the last hunter-gatherers began to make their first agricultural experiments in the tenth millennium BC, domesticating several species of cereals and legumes. Growing wild cereals led to their domestication through the selection of traits in what is known as the domestication syndrome (Brown et al. 2009).

We are aware that harvesting with sickles played a major role in cereal domestication. Harvesting would have caused the progressive unconscious selection of mutant individuals among the population of wild cereals leading to domestication (Hillman and Davis 1999). Wild cereals must be harvested before the complete maturation of the plant to avoid the loss of grain because of the fragile characteristics of the basal rachis of the seeds.