The Culture of Energy
The Culture of Energy

Edited by

Mogens Rüdiger

Cambridge Scholars Publishing
TABLE OF CONTENTS

Introduction .. vii
Mogens Rüdiger

Energy and the City

Gas-light in Italy between 1700s & 1800s: A History of Lighting................ 2
Davide Del Curto and Angelo Landi

De-electrifying the History of Street Lighting: Energies in Use in Town and Country (Portugal, 1780s – 1930s) ... 30
Bruno Cordovil

Electric Light and the Cityscape... 82
Olivier Namias

The Hidden Dimensions of Electrical Architecture............................... 93
Olivier Namier

Spending and Saving

NIS Countries: Culture of “Energy Spending” .. 104
Sergey Kizima

Ågesta – The Suburb Nuclear Plant: The Possibilities of Re-Use and Large-Scale Perservation of a Radiation-Contaminated Power Plant... 118
Per Lundgren, Magdalena Tafvelin Heldner, Eva Dahlström Rittsél

A Tamed Shrew? Images of the Atomic Age in Dutch Popular Culture, 1945-1957... 136
Dick van Lente

Energy Conservation in America: The Case of New York.................. 158
Robert Lifset
An Environmental Perspective on Recent Energy Sector Development in Denmark - Looking Back on the Last 15 Years of Change 167
Christian Friberg Nielsen

Energy and the Home

Energy in Homes – An Historical Approach to Understanding New Routines ... 180
Kirsten Gram-Hanssen

How Danish Households Went Electric and the Construction of the Modern Danish Housewife .. 200
Jytte Thorndahl

Women in Rural Indian Households and Energy Needs: Struggle and Solace – Cultural Perspective to Reality 217
N.K. Kumaresan Raja

The New Culture of Energy: How to Empower Energy Users? 236
Grégoire Wallenborn

Heating and Lighting

The Diffusion of Central Heating Systems in Milan, Italy between the 1700s-1800s ... 256
Carlo Manfredi

Lessons Drawn from the History of Heating: A French Perspective 268
Emmanuelle Gallo

An Integrated Approach towards Energy and Aesthetics in Lighting 281
Amardeep M. Dugar

Contributors .. 287
INTRODUCTION

MOGENS RÜDIGER

Energy is a hot issue these days. Primarily, this is because it is at the top of the list of concerns over the climate and the environment, the supply security, the price and economic growth. This is with good reason. Energy is an indispensable element in modern life, and if we look at the period after World War II, energy has increasingly become an essential part of everyday life. It has become one of the raw materials of human life, not the only one, but one of the most important.

Everyday life is unthinkable without energy. From the electric toothbrush’s first oscillating motion to the bedside lamp’s last ray of light, our life is based on energy use. Almost every activity we pursue during the day, on our way to work, at work, in the home or related to leisure - the activity presupposes energy use.

The culture of the modern world involves sizeable and continuous consumption of energy. Like most technology, energy use suspends some of the natural conditions of existence. The alteration between warmth and cold, between light and dark, has been suspended by the introduction of reliable heating and electric lighting in buildings. In most parts of the world, we have a light whenever we desire it, and the buildings maintain a comfortable temperature of 21 degrees Celsius by use of either heating or air-conditioning. The welfare state has significantly sped up this development to a degree that notions such as wellness and individual well-being have become natural elements of our consumer culture.

The modern understanding of energy emerged with the industrial society. The first industrial revolution was indeed revolutionary exactly because in the production of goods and when mechanical energy replaced animal and human energy. Since the middle of the 19th century, modern energy found its way to other parts of society, to transport, the household, etc. In most – but not all – places, the gas light triumphed as the street light and the old natural oil lamps disappeared because of the brighter and safer light from
the new lamps. As time passed, when the product was improved and the price became reasonable, the electric bulb was gradually the preferred choice. The city and the home became enlightened.

From the very beginning, the exploitation of gas and electricity were separate from the production of energy and from the use of energy in private households and industry. Production and consumption of energy was slowly but surely separated and, in short, replaced by a structure in which production was located in the public sphere, while consumption remained in the private sphere. The introduction of district heating was somewhat later and a significant step in this process. After that, energy use turned into a question of pushing a button or turning a valve. Oil and gas-fired central heating was, in a way, an exception to these changes because the production and the use of heat takes place under the same roof and the user does not need to make any effort on a daily basis.

At the same time as energy has grown into a more indispensable element in modern life, to the individual human being it has lost its materiality. This is a consequence of the centralisation of production at power stations, at the combined heat and power stations, and at nuclear power plants. Subsequently, the word ‘energy’ has become a symbol of the fact that we no longer have a direct connection to the value of fuels, but only to energy using instruments or appliances in manufacturing facilities, in households and on highways as well.

The disappearance of the present materiality of the fuels (wood, coke, coal, etc.) in favour of the absent materiality of energy, firmly indicates that a scientifically-based conception of the universe of energy requires more than an understanding of the technology-based improvement of everyday life and the technical and the economic sciences’ quests for optimizing energy efficiency in production and consumption. We also need to address and explore the cultural contexts in which the daily turnings on and off of power and heat take place, if we want to reach a complex understanding of energy’s role in modern societies. In other words, an understanding which not only focuses on the technological, political or economic aspects, but combines those perspectives with a thorough historical analysis of cultural contexts.

Overall, the purpose of this collection is to contribute to a more profound understanding of cultural perspectives on energy. It presents a number of
inspiring studies in contexts of cultural and energy since the 1850s. It is divided into four parts.

Part I, “Energy and the City” focuses on the breakthrough of modern energy as a result of the introduction of placing lights in the city, which included both the evening and the night. The study of artificial illumination of the city and the architecture of light, as well as electrical buildings and the architectural visions behind them, also illustrates this historical process.

The chapters in Part II, "Spending and Saving” discuss considerations on various parameters related to the production of energy, especially efficiency and environmental concerns. Since World War II, nuclear power has influenced the notion of energy, primarily the popular notion, and has been an important topic in ongoing public debates on energy. Since the early 1970s, the possibility of an energy crisis has been apparent and the public as well as the political responses to the first oil crisis, for example conservation or changes in the energy mix, forms another essential issue in the history of energy in modern society.

Part III, "Energy and Home” addresses how energy is used in the home and in the household, which automatically includes casting light on the role of a housewife, her role as the family’s fixed-point and as the bearer of modernity in the family in the 1950s and 1960s, for example by the use of electric appliances. The attitudes toward energy among common people have changed since then, but a study of practice shows that energy saving is a far more difficult process than ‘good ole’ modernisation.

In Part IV, "Heating and Lighting” the focus is on historical changes in the heating of buildings and on the introduction of central heating as a prerequisite for improving the milieu in homes and furthering a more casual life style. The same goes for lighting because correct and aesthetically balanced light is crucial for improving the quality of life – the main purpose of energy.

The contributions in this publication were first presented at the conference on “Energy and Culture” in Esbjerg, Denmark from 6-8 February 2006.
The conference was organised by members from the Centre for Energy and Society:

Hanne Thomsen (The Gas Museum, Hobro);
Flemming Petersen (Danish Museum of Electricity, Bjerringbro);
Morten Hahn-Pedersen (The Fisheries and Maritime Museum, Esbjerg);
Søren Federspiel (Copenhagen Business School), and
Mogens Rüdiger (Aalborg University).

Copenhagen May 2008
ENERGY AND THE CITY
During 18th century, cities were still afraid of night: at sunset the town gates were closed and so were the doors to the houses. After curfew, armed units patrolled the streets by the light of torches in an atmosphere that is hard to imagine today.¹

Public lighting in London relied on house owners who put oil-lamps at their front doors. It was only in 1736 that a reform divided the city into districts whose lighting was taken care of by small corporations.²

In the late seventeenth century France, the absolutist state disposed the use of public lanterns to light the streets, giving birth to the first attempt at urban lighting. The police were entrusted with the control and maintenance of this very simple means of lighting. Lamps offered better safety guarantees while the lampposts were considered a routine symbol for a long time as and breaking one of them was considered as a rebellious act: lighting was, above all, a question of public order.

Lanterns were made of a glass and an iron box. A candle was lit inside the box and hung from a rope across the street. Antoine Lavoisier made experiments in order to regulate street-lamps - called réverbère - with multiple oil wicks and internal surfaces reflecting light downwards and sideways. It improved the lighting efficiency of the street-lamps, but was unable to provide positive results on the overall lighting situation.

¹ We are much thankful to the organizers of the CES Conference and to all the participants. Particularly useful were the conversations with Emmanuelle Gallo, Olivier Namiais and with Bruno Cordovil.
1. During 18th century armed units still patrolled the streets by the light of torches.

Availing himself of Lavoisier’s experiments, in 1783 Ami Argand\(^3\) presented an innovative oil lamp in Paris. A flat, tubular-shape section wick was substituted for the traditional candlewick and improved the lighting efficiency of the traditional combustible material. The Argand lamp appeared prior to the gas lamp and forecast the combustion procedure based on the mixture made of oxygen and combustible material.

Another improvement was attributed to the glass cylinder, which protected the flame from drafts thus improving its combustion, the vent due to the “flue effect” and consequently its efficiency.

\(^3\) Argand was born in Genève in 1755 and moved to London where he registered the patent for his lamp in 1784. Cf. *Ami Argand à Versoix, histoire et archéologie d’un site industriel*, (décembre 1999), Direction du patrimoine et de sites, République et Canton de Genève.
Besides these, Argand proposed a further device that made it possible to drive the wick up and down, regulating the flow of the oil to the flame and therefore, its intensity. Argand achieved very positive results in the process of flame regulation, even if this was still tied to the traditional system using oil.

At the end of 18th century, industrial development awakened a new interest toward new and more suitable sources than candles and oil, to guarantee the production inside the factories.

At the very beginning of the 19th century in France, Philippe Lebon⁴ employed a coal-gas mixture obtained by distilling wood for his project called “Thermolamp,” a type of big stove that was able to produce warmth and light simultaneously. Lebon’s “Thermolamp” matched the two main uses of energy in the houses – warmth and light - and it reached both the conservative and innovative aims of a self-produced energy. Furthermore, its domestic pipe network anticipated the following and wider applications of the same system.

⁴ Philippe Lebon (1767-1804), engineer at the Service de Ponts et Chaussées.
During October 1801, Lebon tried to demonstrate his ideas by illuminating the Hotel Seignelay in Paris but he was unsuccessful. Lebon’s invention was short-lived and did not overtake the first experimental level: the warmth produced was tiresome during summertime and the general functioning was complicated and onerous. Furthermore, the problems linked with the distillation and with the combustible supply which the Thermolamp wanted to concentrate in the same apparatus, started to be solved by distilling coal industrially a few years later in England.

The coal-gas blend is a by-product of distilled coal and has been employed to illuminate factories in England since the 18th century. Coal-gas was originally employed to illuminate wide industrial spaces. Then gas devices quickly improved and the gas blend started to be used to illuminate the interiors of the houses as well.

William Murdoch (1754 -1839), a mechanical engineer at the Boulton and Watt Foundry in Soho-Birmingham, produced furnaces and steam-
power. Working in a highly productive and technological workshop he could carry out a lot of experiments producing gas from different kinds of coals. He gave a demonstration of the new lighting system during the Peace of Amiens celebrations in 1802, illuminating the Boulton & Watt Foundry with two strong gas flames.

Another Englishman, Frederick Winsor, is considered the main person responsible for enlarging the system to an urban scale. In 1806, he

7 Samuel Clegg, employee at Boulton-Watt, perfected Murdoch’s realizations setting a lime purification plant for the treatment of the crude gas; this crude gas impurity caused bad smells, pipages obstruction and corrosion.
8 Murdoch had a support in Gregory Watt -James Watt’s son-; he assisted in Paris at the Lebon’s demonstration.
9 Albrecht Friedrich Winzler (1763-1830) was born in Moravia and then moved to England, where he anglicized his surname in Winsor. He went to Britain before 1799 and three years later moved to France where he investigate the Lebon’s “thermo-lamp” - patented in 1799 -. Later he came back to Britain where in 1807 lit one side of Pall Mall, London.
founded the National Light and Heat Company in London and next year he started to illuminate a small district of the city.11 In 1819, he moved to Paris to build a system like the one he had planned in London. Murdoch’s first prototype became an urban-scale application extending the use of a coal-gas mixture to the city lighting, both for private and public employment.

On this point, the diffusion of gas-lighting was generally connected to the development of an industrial tissue both for the necessity to supply combustible and for the opportunities to sale by-products of the distillation (coke, ammoniac waters, tar). England was a leader in Europe for the diffusion of gas lighting followed by France, Belgium and Germany.12

Argand’s lamp was used to light public buildings in Italy during 18th century. Since the beginning of 19th century, before the quick season of the arc-lamp, gas lighting had started to be widely employed to illuminate both single buildings and entire cities, especially in the North of the Country. The south of Italy was slower to accept this sort of novelties and gas lighting did not quickly spread in the southern towns. Also the old capitals, Rome and Naples, never reached the same levels of consumption as the northern towns, where modern productive industries fostered the diffusion of gas lighting.

It must be noticed that the political situation in Italy at the middle of 1800’s was considerably different in comparison with other European countries, where an earlier settlement of central forms of government allowed to plan national programs of economic and industrial development. Italy had been composed by several little states before it got united in 1861 and the development of a real national industrialization in the newborn State began only after 1870’s. This political background had

10 “in order to supply our roads and houses of light and heat... as currently they are supplied with water”, (Schivelbush W., op.cit.).

11 In 1812 he obtained his first public assignment with his society “Gas Light and Coke Company”.

12 M.E. Falkus gives many data about the English situation and they help to better understand the spreading of Italian gas lighting. Almost all English cities having a population of more than 10000 inhabitants were illuminated by gaslight since 1826; towns with at least 2500 inhabitants had their own gas company since the middle of XIXth century. In M. E. Falkus, (Dec., 1967), “The British Gas Industry before 1850”, in The Economic History Review, New Series, Vol. 20, No. 3, pp. 494-508.
surely affected to slacken the spreading of an industrial policy and, consequently, the diffusion of gas in all the little states which the Italian peninsula was divided in. They were characterized by different – and sometimes opposite – economic and political situations, most depending by local power.13 Therefore the gas-light spread in Italy has been strongly influenced both by the political fragmentation both by the backwardness of its industrial development.

5. Both gas lighting and railway has transported the resources for the industrial economy.

This situation can be described taking a look to the dates when gas started to be used for public lighting in the main cities. In Piedmont, Tuscan and Lombard-Venetian State, the first towns were illuminated at the beginning of 1840’s: Turin in 1838, Venice in 1842, Milan in 1845, Genoa in 1846.

In Venice, the first contract authorization for public lighting was signed on 30th November 1839 with a Lyonnais company founded by Giovanni De

13 As an example, only in 1851, did the State of the Church allow installing gaslight in Rome because Pope Gregorio XVI had reserves about artificial light, considered subversive as far as the “divine conception” of day and night was concerned. Enrico Penati, (1972), \textit{1837 luce a gas: una storia che comincia a Torino}, AEDA, Torino, p. 13.
Frigiére, De Saynes, Bonnardet e Roche. Despite several technical problems the society began to illuminate the streets in January 1843 with 60 lamps. After few months the number of lamps increased to 150, and in July 1847 it reached 500 public lamps and over 3000 private users. The gasworks was built, in the north-east part of the city. Canals to be overtaken evidently represented one of the main difficulties to the spread of the gas network and during the restoration of the Rialto Bridge, pipes were placed under the new steps of the bridge, so gas could reach the neighbourhood of S. Polo, S. Croce, areas particularly needy of the new and plentiful light.

The Venetian Region was truly one of the first to be interested by a wide spread of the gas-light: in 1845 Verona signed a first contract for public lighting with a French company and, at the end of the same year, the city was provided with 153 lamps for street lighting. Vicenza and Padua were equipped with a public light system in 1847, while Udine, due to a contractual quarrel, was lit in 1853.

In Florence, the first gas company, called Cottin-Jumel-Montgolfier-Bodin, was founded on 2nd January 1839. The gasworks was built in the

16 near Campo San Francesco della Vigna.
17 “sotto i nuovi scaglioni [scalini, gradini] del Ponte i tubi conduttori del gaz, che da questa origine si dirameranno nelle contrade dei sesti di S. Polo, S. Croce, … luoghi che maggiormente abbisognano di una luce viva e copiosa”. Giulio Lecomte, (1848), op. cit., p. 654.
southern side of the river Arno19 and gas began to be used for public lighting in September 1845.20

In Turin,21 the old capital of the Kingdom called “Regno di Sardegna”, Caffè Gianotti had been lighted by gas since September 1823.22 In 1837, the first private company Ippolito Gautier and Francesco Reymondon was instituted to produce and distribute gas.23 However gas has been used for a permanent public lighting since the October 1st 1846, when 246 gas

19 In 1845 the gas work was built between the “Torre Santa Rosa” and the “Porta di S. Frediano”, in an 7500 square meters area. In 1854 it increased its structure with a couple of new gasometers, and it reached a 15900 square meters area. Cf. E. Penati, op. cit., p. 163.

20 Comunità di Firenze, (1854), Contratto di accollo dell’illuminazione a gas della città di Firenze in estensione di quella esistente e di quella attualmente a olio, Stamperia Granducale, Firenze.

22 Eng. Lana - responsible for the urban lighting in Turin and fireman chief - built a small plant to distillate oil and produce lighting gas and used this plant to illuminate the Caffè Gianotti since 1820. E. Penati, op. cit., p. 39.

23 In 1851 a second company was founded in Turin, the Società Anonima Piemontese per l’illuminazione a gaz in Torino, established in Borgo Dora. It converged in a new company with existent society in 1856. In 1862 the Società Anonima dei Consumatori del gaz luce di Torino was established in Borgo Vanchiglia. Only in 1925 all the Turinese gas companies converged in a single company, called Italgas. Cf. Cerutti Renato, Gianeri Enrico, (1978), L’officina del gas di Porta Nuova a Torino. La prima in Italia, Società Italiana per il Gas, Torino.
lampposts were added to the 600 ones already existing and supplied with oil.24

The delay between the construction of the gasworks (1837) and the beginning of the public lighting service (1846) is due to the decision, taken in 1836 by the local administration, to postpone for ten years the expiry of the existing contract for the oil supplying.

7. Gasometer in Milano.

In 1887, while the first electrical lighting system was being tested, the number of gas lamps grew up to 4.000 and the oil lampposts were reduced to 300.

Genoa was the second city in the Sardinian Kingdom. Its inhabitants has maintained for a long time the habit of burning artificial oils such as paraffin, boghead oil25 and, above all, the olive oil locally produced.26

24 Oil lamps have been working in Turin since 1675. Oil was kept in use for long time to illuminate the streets because it was easily available and cheaper than gas. Cf. Mauro Barchielli, (1995), La città dal buio alla luce, Nuova Pratiche Editrice, Parma, p. 101.

25 Boghead is a bituminous schist; artificial oil, petroleum or bituminous schist oil, were introduced in Genoa at the beginning of XIX century after the discovery of a natural schist field in the midland, near Amiano (Pr). The combustion of petroleum emitted smoke and acrid smell but it gave a very bright light. Petroleum was mixed with olive oil in equal parts in order to improve its smell and to save money. Cf. Gazzetta Nazionale della Liguria, year IV, nº 6, 24 July 1802.

26 There is no detailed information about the definitive passage from oil lighting to that of gas in Genoa, the two systems coexisted for tens of years, so both olive oil and boghead oil continued to be used until the end of the century, when the first electrical appliances were invented. A license for the last lamps management, signed on 8 August 1861, states that in Genoa there were already 291 oil lamps to
Olive oil was very cheap in comparison with mineral oils charged with an import duty. Lanterns and streetlamps were therefore supplied with about 16,000 kgs of olive oil from the Riviera Ligure and Sardinia. The majority of the oil was used to illuminate the streets; the rest was consumed into the main public buildings such as the Town Hall in Strada Nuova, S. Lorenzo Cathedral and Palazzo Ducale.

In 1843 the City Council allowed the “Società per il gaz illuminante di Genova” to build the gasworks along the river Bisagno and a pipe-network to supply the first gas lamps near the railroad station and a few urban squares. A first public lighting system was established on the 5th September, 1846: 10 candelabras and 32 lamps were placed between Piazza Acquaverde and Piazza S. Domenico. A further concession was signed five years later (1848) to extend the pipe-network in order to be adapted to boghead oil. ASCGe, Amministrazione Municipale (1845-1860), file 1644, 8 August 1861.

The Inspector of Urban Lighting was greatly interested in improving this material and he tried an experiment in order to compare the combustibles for “réverbère” and gas lamps and found a relationship between the intensity of the flame and the consumption of oil (or petroleum). In 1852, four lamps – one and two flame lamps, one lamp with flat ribbon and the last fuelled with boghead oil - had been compared in order to choose the better one for lighting the city. Boghead oil lamp produced a double lighting intensity in comparison with the others; the flat ribbon lamp instead consumed less in relation to the lighting intensity produced. ASCGe, Amministrazione Municipale (1845-1860), file 1644, 21 June 1862.

Evidence of this can be read in supply contracts of the period: 18,000 olive oil kilos were enough to supply the Genoese post lamps for six months. They were bought for 100 new lire in that period, and their composition should not cause bad smells. Cf. ASCGe, Amministrazione Municipale (1845-1860), file 1298, 29 November 1853.

Public Administration early understood the importance of urban lighting and its connection with public safety; in 1849 oil lamps that did not work, were repainted and silvered. They needed also a frequent maintenance in order to remove wick encrustation and to clean the whole street lamp. Cf. ASCGe, Amministrazione Municipale (1845-1860), file 1298, 29 November 1853.

This contract - that lasted for 67 years! – set all particular aspects linked with the gas distribution, from the pipes instalment to the rule of importing combustible inside the town walls.
supply gas to the private citizens and to install a wider public lighting system. Since 1857, the *Union des Gaz* started to provide gas for public lighting and began to manage the construction of a wider city pipe-line. This network greatly developed among private owners. In 1858 they bought about the 60 per cent of the whole gas produced. The gas network was quickly enlarged owing to the number of gas lamps which tripled between 1856 and 1863, whereas the number of oil lamps halved. In 1899, gas industries in Genoa were the most productive of Italy after those in Turin and Milan.\(^{32}\)

<table>
<thead>
<tr>
<th>CITIES</th>
<th>YEARLY CONSUMPTION (M(^3))</th>
<th>INHABITANTS</th>
<th>M(^3)/INHABITANT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILAN</td>
<td>25,000,000</td>
<td>406,592</td>
<td>61,49</td>
</tr>
<tr>
<td>TURIN</td>
<td>26,500,000</td>
<td>249,827</td>
<td>106,07</td>
</tr>
<tr>
<td>GENOA</td>
<td>20,400,000</td>
<td>206,088</td>
<td>98,99</td>
</tr>
<tr>
<td>ROME</td>
<td>13,500,000</td>
<td>437,419</td>
<td>30,86</td>
</tr>
<tr>
<td>NAPLES</td>
<td>9,415,000</td>
<td>481,500</td>
<td>19,55</td>
</tr>
<tr>
<td>FLORENCE</td>
<td>5,089,000</td>
<td>206,878</td>
<td>24,60</td>
</tr>
<tr>
<td>MESSINA</td>
<td>1,975,000</td>
<td>126,449</td>
<td>15,62</td>
</tr>
</tbody>
</table>

Vittorio Calzavara (1899), *L’industria del gaz illuminante*, Hoepli, Milano.

Since 1852, the oil lamps in Carlo Felice Theatre\(^{33}\) were adapted to the new combustible. The 96 burners in the huge chandelier were adapted for

\(^{32}\) Transport prices for importing British coal, at first were favourable for Genoa in comparison with other Italian cities; in 1863 the cost for lighting a Genoese gas lamp was less than a half compared with a Turin one. Vittorio Calzavara, (1899), *L’industria del gaz illuminante*, Hoepli, Milano.

\(^{33}\) Finished in 1826 it was planned by the architect Carlo Barabino (Ida Maria Botto (a cura di), (1986), *Il Teatro Carlo Felice di Genova: storia e progetti*, catalogo della Mostra presso le Sale didattiche di Palazzo Rosso e Palazzo Bianco, Genova, 22 febbraio-15 aprile 198, Genova, Sagep; Comune di Genova, (1955), *Il teatro comunale di Genova Carlo Felice: profilo storico dai primi progetti ottocenteschi... e la documentazione delle vicende amministrative promosse dalle civiche amministrazioni per giungere alla sua ricostruzione*.

the passage of gas,34 and the lamps in the proscenium and in the orchestra, were also substituted.35

8. Galleria Mazzini in Genoa, 1873-1881. (ASCGe, file 1645)

Galleria Mazzini was built between 1874 and 1876,36 next to the Carlo Felice Theatre. This arcade was built following the example of the main European galleries and was provided with a modern gas-lighting system. A big bronze chandelier lighted the cross, whereas bracket lamps lighted the sides of the aisles.

34 Every burner consumed 180 gas litres an hour; the public lighting inspector set that in “3 hours and ¾” - a normal length for a play - the consumption should have been 68 cubic metres of gas.
35 There were severe problems of functioning due to the poor gas quality and rudimentary technology in the distribution network of the building; these defects determined the substitution of pipes and burners of the pit chandelier by the Lighting Inspector.

“il cattivissimo stato e l’ossidazione dei buchi per i quali esce il gaz in cattivissime condizioni di combustione, ed il cattivo sistema dei bracci in ghisa à cui sono otturati i becchi, attraversato da un tubo di ottone che facilmente si ostruisce dei depositi del gaz e per la sua forma ne è assai difficile la pulitura”.
—SCGe, Amministrazione Municipale (1845-1860), file 1287, 5 January 1859.

In 1908, the Municipal Authority decided to substitute the gas lamps that had been illuminating the Acquasola City Gardens for over 40 years. Regenerative gas wick lamps were chosen to replace the old lamps notwithstanding the electric network had already and greatly developed. They were made precious by candelabra, which were more suitable in preserving the ‘old fashion’ atmosphere of the gardens, where middle class families used to have a walk.

Both in Turin and Genoa private gas companies invested capitals in the construction of a gasworks before they have obtained a concession for public lighting. In many cases, several years divided the construction of the gasworks from the moment when the City Council issued a concession for public lighting. Scarcy private incomes sustained companies’ balances before that moment and, after the establishment of a gasworks, many companies incurred debts and bankrupted.

The industrial backwardness was confirmed also by the monopoly of Italian gasworks: these were built and managed by foreign societies, in particular French, Belgian and German which did not just bring assets to

38 These candelabra were produced by the continental company “J. Brunt & C.”, placed in Milan. ASCGe, Ann. Mun. (1860-1910), file 1552: Acquasola Gardens (1873-1909).
Italy, but also were supplied by a technical support: gasworks were built by foreign workers and managed by directors who were trained in foreign works.39 Particularly the Union des Gaz was a true multinational company and operated mostly in the main northern cities like Milan, Genoa and Bologna.

The diffusion of gaslight was considerably delayed in the south of Italy where economy moved more slowly toward industrialisation and only the main cities were equipped with the new illumination system: Naples was lighted in 1840, Rome had the first gas-light installation in 1854, Palermo in 1861.

In Rome the political situation of the Papal States during 1850’s and 1860’s delayed the spread of gas-light. After the attempts by the Fratelli Trouvè & C. company in 184740 and by James Shepard41 in 1852, the first concession for public gas lighting was issued to the Società Anglo-Romana per l’Illuminazione a Gas della Città di Roma. This company began the construction of the gaswork in the area of the Circo Massimo42 and public lighting started on 1th January 1854.

In Bologna, the second city of the Papal States, the City Council established the first convention for public lighting on 22nd June 1846 with a society founded by the French bankers Enrico Saint Cyr, Adriano Trouvè, Edmondo Goldsmith and Giovanni Grafton. The gas company completed the construction of the gasworks in September 1847 and began to illuminate the streets during the same year. The City Council rescinded the contract in 1862 and a new contract for the lighting of the entire urban area was signed with the Compagnia Ginevrina dell’Industria del Gas.43

39 AA.VV., Dalla luce all’energia, op. cit., p. 21.
40 Pope Gregorio XVI died in 1846.
41 He managed The Imperial City of Rome and Italian Gas Light and Coke Company. Cf. E. Penati, op. cit., p. 174.
42 This gasworks, called “dei Cerchi”, was built in 1853. On October 1871 a second gaswork was built in the northern side of the city, along Via Flaminia: it was called “del Popolo” and it could produce over 40000 cubic meters of gas in a day. Cf. E. Penati, op. cit., pp. 174-179.
43 The new gasworks was built between “Porta S. Donato” and “Porta Mascarella” - in the northern side of the city, outside town wall -; it measured 14700 square meters. Archivio Storico del Comune di Genova (hereafter ASCGe), Amministrazione Municipale (1860-1910), file 1844-3, pamphlet titled “L’Officina del Gas di Bologna” (settembre 1912).
Naples44 was the first southern city to be lighted by public gas lamps: first attempts were carried out by the French Society De Frigière-Cottin-Montgolfier-Bodin as the one in the porch of S. Francesco di Paola on 10th September 1837. In 1840 they signed the first contract with the government and began the season of the street lighting. The precocity of the Neapolitan case remained an isolated event in the Two Sicily Kingdom: the first tests were conducted in Palermo in 1845 and a permanent public lighting system began to work only in 1861.

These dates are useful to refer the southern situation to the rest of Italy. Nevertheless, they probably do not allow to completely understanding the meaning of several "industrial primacies" reached by the southern kingdom at the beginning of 1840's. The construction of Pietrarsa mechanical works,45 the suspended bridge on Garigliano River46 and the first Italian railway draft, from Naples to Portici47 must probably be considered as isolated events according to the lack of an industrial development and to an economy mainly founded on agriculture.

More in general, the Italian situation at the middle of 1800's could be described through a critical evaluation of the dates when a first public lighting system has been installed. These dates sometimes concern the making of a demonstrative implantation, such as the lighting of the main urban street, a square, an important public building. As an example, since

44 Naples was the most densely-populated city in the Italian peninsula along XIXth century: in 1861 it was supposed to have 447,000 inhabitants. At the beginning of XXth century, they were 750,000 (Istat - Istituto Nazionale di Statistica, Roma).

45 Pietrarsa mechanical works were built on a site called Pietra Bianca, between the rail Naples-Portici and the sea. On 22nd May 1843 Pietrarsa works were converted in maintenance and production of steam engines. AA.VV., (1990), \textit{Da Pietrarsa a Pietrarsa. Storia e immagini del treno italiano}, Ente Ferrovie dello Stato, Roma.

46 The “Real Ferdinando” bridge on the Garigliano River was projected by eng. Luigi Giura in 1828. In 1832 it was the first suspended bridge constructed in the continental Europe. Its components were supplied by Calabrian ironworks - owned by Carlo Filangeri - and its cost amounted to 75000 ducats. Cf. Carmine Antonio Lippi, (1817), \textit{Ponte pensile pel Garigliano: natura dé ponti pensili, ponti pensili puntellati i quali riescono i migliori sopra dé fiumi grandi che gelano nell’inverno}, Napoli.

47 On 3rd October 1839 the railway draft was inaugurated and it was 7.25 km long. In the first 40 days, the eight wagon train transported more than 85,000 persons. However it remained a local rail despite it had been extended to Castellamare in 1842 and to Pompei in 1844. Cf. Antonio Gamboni, Paolo Neri, (1987), \textit{Napoli-Portici la prima ferrovia d’Italia}, Fausto Fiorentino Editrice, Napoli.
1864 the S. Andrea Basilica in Mantua has been lighted by a gas-light system which substituted the old oil lamps for the illumination of the nave and the dome. This important installation was completed a few months after the construction of the town gasworks thus anticipating the following diffusion of the gas lighting throughout the town. This way, many early popular installations did not ever coincide with the construction of a civic gasworks and, consequently, with a wide diffusion of gas for private and public employment.

Otherwise, these dates testify the moment when a local administration granted the licence to award a public gas-lighting service. Local authority has kept this faculty for a long time influencing, this way, the effective diffusion of the implantation for public lighting both in the big cities both in the country towns. Gas has generally spread throughout the small towns rather gradually than in the big ones. As an example, the first gas-light system has been installed in Cremona during 1862 and in Mantua in 1864. Otherwise, the spread of gas-light was not directly related to the width of the urban centre or to the population density as demonstrated by Alessandria and Cuneo where a first gas system has been realized a few years later than Turin, during 1847 and 1849 respectively.

In the end, the diffusion of gas-light in Italy was inconstant and not-linear way. Even if every city has its particular history, gas spread throughout the

48 The S. Andrea Basilica in Mantua, a Renaissance masterpiece designed by Leon Battista Alberti and built in different stages from 1472 to 1765, when the wide dome designed by Filippo Juvarra, was finally completed. Since the second half of XIX century, as many other ancient building originally projected to be lighted by candles and oil, the Basilica has been equipped with a modern gas light device.

The base of the wide dome was equipped with a circular tube that provided a number of small gas burners able to light the great dome by the light of their flames. A double lighting system composed by a candelabra and a bracket lamp was applied at the base of responds.

The system was employed until the early 20s, but it provoked damages to the painted surfaces of the walls and frescoes. Today, they are completely covered with carbon sediment, a by-product of gas combustion. The gaslight installation also produced damages to portions of painted plasters and decorative stuccoes.

Archivio Storico Diocesano di Mantova, Basilica di Sant’Andrea collection, file 217-I, 18 May 1864 (gas light in the nave).

49 Mauro Barchielli, (1998), Luce: breve storia dell’illuminazione pubblica a Cremona, AEM, Cremona.

50 Both Provinces of the old Piedmont State
Italian cities according to a repetitive procedure, already tested across the Channel: first, early and desultory experiments were attempted in private buildings by rich and enterprising citizens (see what happened in Milan); after a few years, a private company was founded and allowed to supply gas for private uses; finally, the gas started to be employed for public-lighting, through the implantation of an initial local network growing, year by year, and through the construction of a town gasworks.51

Milan represented a special chapter in the history of gas lighting in Italy. The advanced position toward Europe make this city a sort of connection point between Europe and the rest of the Country.

Some Aristocratic innovators made early attempts to provide gas lighting in curious examples like Conte Porro Lambertenghi, an amateur physicist and inventor, who built a steam-power device near his spinning mill.52 In 1818, Porro Palace in Milan was illuminated by plants bought directly in England at the Frederic Winsor factory53 with some “original” distilled coke from Newcastle and an English mechanic to make them work properly. Silvio Pellico (1789-1854), the tutor of the Count’s children, made the first Italian translation of *A Practical Treatise on Gas Lighting* by Frederick William Accum, published in Milan in 1817.54 Pioneering applications of this system had been implemented by Giovanni Aldini55 in 1820. He lighted the private theatre in via dell’Olmetto with the gas produced by a small oil distiller. This first experiment did not allow him to persuade the Austrian Administration to realize a gas plant to illuminate the “Teatro Regio alla Scala” as well.

52 Contiguous to Cassina Rizzardi home, near Fino Mornasco (Co).
54 Friederich Christian Accum (1817), *Trattato pratico sopra il gas illuminante*, Italian translation by Silvio Pellico, F. Stella, Milano.
55 Giovanni Aldini (1762-1834). His uncle was Luigi Galvani’s (1737–1798).
Since the beginning of 1830’s the Gaetano Brey’s company began to distribute gas by the employment of gas cylinder in order to avoid the high costs for the pipe-laying. In fact, pipe-lines demanded enormous capitals to be installed, even the half of the amount needed to build the entire gasworks, and only foreign societies were able to invest so much.

The gas produced by the Brey’s company was employed to illuminate the Galleria De Cristoforis since 1832 where gas lamps were installed beside twenty-eight traditional lamps supplied with oil.

In June 1843, the Municipal Administration signed a tender contract with the Achille Guillard Society giving it the task to build a factory for the production of gas. After a few years, this factory included an 1850 mc gasometer, 48 furnaces distilling the coal imported from Newcastle and

57 Cf. Valerio Castronovo in AA.VV., Dalla luce all’energia, op. cit.

58 “Il passaggio delle ventotto lampade con specchi a riverbero, che si accendono in un salotto posto in fondo al secondo ramo della Galleria, e che per mezzo di un mulinello corrono lungo il tetto al posto loro in men di un minuto, va osservato dal Caffè, onde comprendere l’ingegnoso artifizio che ha saputo vincere la difficoltà della voltata per passare al primo ramo; difficoltà che si manifesta da una leggerissima scossa che ogni lampada riceve nel momento della voltata”. Cf. “Ragguaglio della Galleria De Cristoforis – aperta in Milano il giorno 29 Settembre 1832”, in Annali universali di statistica economia pubblica, geografia, storia, viaggi e commercio, (July-August-September 1832, file 33), presso la Società degli Editori degli Annali Universalis delle Scienze e dell’Industria, Milano, p. 287.

59 As certified by notary Tommaso Grossi. His initiative was published in the Il Politecnico review; Carlo Cattaneo was one of the promoting partners of Guillard’s company. Achille Guillard, “Dei vari modi d’illuminare e principalmente del nuovo metodo idrobituminoso”, in Il Politecnico, (January 1839), Luigi di Giacomo Pirola ed., Milano, p. 9; Achille Guillard, “Delle varie materie dalle quali si può estrarre il gas illuminante”, in Il Politecnico, (March 1839), Luigi di Giacomo Pirola ed., Milano, p. 225

60 The new gaslight company already supported the warehouse in Contrada Clerici to store the oil employed for the public lighting. Cf. Bartolommeo Borroni, (1808), Il forastiere in Milano, Stamperia di Pasquale Agnelli, Milano, p. 181.